Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: EMBEDED SYSTEMS
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
EMBEDED SYSTEMS


[attachment=65015]


ABSTRACT

Real-time industrial process control& monitoring using GSM
Industrial Process Control and Monitoring through GSM projects main idea is to provide solution for industries to remotely monitor parameters using GSM Network. This application will decrease cost factor for company.
In some industries proper maintenance of the controlling system or industrial devices is crucial to deliver an uninterrupted output. So to reduce the maintenance costs and to optimize critical monitoring system GSM Based Industrial Automation Technology is used.
For any application in the industries there are many parameters to be handled. In this project we are concentrating on temperature sensor. This sensor is fixed at specified location, for our application to be performed. The Sensor gathers the values and sends the information to the microcontroller continuously. The microcontroller receives the values and sends the corresponding values to the LCD to display. This is acyclic process which performs till our requirement is done. Whenever the temperature exceeds the set point the controller drives the fan ‘ON’ and if the Set-Point declines it drives the Heater ‘ON’. This process is automatic which depends on the Set-Point.
GSM (Global System for Mobile communications) is an open, digital cellular technology used for transmitting mobile voice and data services. Here we are using it only for transmitting and receiving the messages. GSM wireless data module is used for remote wireless applications, machine to machine or user to machine and remote data communications in many applications


INTRODUCTION TO EMBEDDED SYSTEM

An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions, sometimes with real-time computing constraints. It is usually embedded as part of a complete device including hardware and mechanical parts. In contrast, a general-purpose computer, such as a personal computer, can do many different tasks depending on programming. Embedded systems have become very important today as they control many of the common devices we use.
Since the embedded system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product, or increasing the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale.
Physically, embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure


APPLICATIONS OF EMBEDDED SYSTEM

We are living in the Embedded World. You are surrounded with many embedded products and your daily life largely depends on the proper functioning of these gadgets. Television, Radio, CD player of your living room, Washing Machine or Microwave Oven in your kitchen, Card readers, Access Controllers, Palm devices of your work space enable you to do many of your tasks very effectively. Apart from all these, many controllers embedded in your car take care of car operations between the bumpers and most of the times you tend to ignore all these controllers.
In recent days, you are showered with variety of information about these embedded controllers in many places. All kinds of magazines and journals regularly dish out details about latest technologies, new devices; fast applications which make you believe that your basic survival is controlled by these embedded products. Now you can agree to the fact that these embedded products have successfully invaded into our world. You must be wondering about these embedded controllers or systems. What is this Embedded System?

Communications applications

"Five-nines" availability, CompactPCI hot swap support, and hard real-time response—LynxOS delivers on these key requirements and more for today's carrier-class systems. Scalable kernel configurations, distributed computing capabilities, integrated communications stacks, and fault-management facilities make LynxOS the ideal choice for companies looking for a single operating system for all embedded telecommunications applications—from complex central controllers to simple line/trunk cards.
LynuxWorks Jumpstarts for Communications package enables OEMs to rapidly develop mission-critical communications equipment, with pre-integrated, state-of-the-art, data networking and porting software components—including source code for easy customization.

INTRODUCTION TO MICROCONTROLLERS

What is the difference between a Microprocessor and Microcontroller? By microprocessor is meant the general purpose Microprocessors such as Intel's X86 family (8086, 80286, 80386, 80486, and the Pentium) or Motorola's 680X0 family (68000, 68010, 68020, 68030, 68040, etc). These microprocessors contain no RAM, no ROM, and no I/O ports on the chip itself. For this reason, they are commonly referred to as general-purpose Microprocessors


MICROCONTROLLERS FOR EMBEDDED SYSTEMS

In the Literature discussing microprocessors, we often see the term Embedded System. Microprocessors and Microcontrollers are widely used in embedded system products. An embedded system product uses a microprocessor (or Microcontroller) to do one task only. A printer is an example of embedded system since the processor inside it performs one task only; namely getting the data and printing it. Contrast this with a Pentium based PC. A PC can be used for any number of applications such as word processor, print-server, bank teller terminal, Video game, network server, or Internet terminal. Software for a variety of applications can be loaded and run. Of course the reason a pc can perform myriad tasks is that it has RAM memory and an operating system that loads the application software into RAM memory and lets the CPU run it

Synchronous Serial Transmission

Synchronous serial transmission requires that the sender and receiver share a clock with one another, or that the sender provide a strobe or other timing signal so that the receiver knows when to “read” the next bit of the data. In most forms of serial Synchronous communication, if there is no data available at a given instant to transmit, a fill character must be sent instead so that data is always being transmitted. Synchronous communication is usually more efficient because only data bits are transmitted between sender and receiver, and synchronous communication can be more costly if extra wiring and circuits are required to share a clock signal between the sender and receiver

Asynchronous Serial Transmission

Asynchronous transmission allows data to be transmitted without the sender having to send a clock signal to the receiver. Instead, the sender and receiver must agree on timing parameters in advance and special bits are added to each word which are used to synchronize the sending and receiving units.
When a word is given to the UART for Asynchronous transmissions, a bit called the "Start Bit" is added to the beginning of each word that is to be transmitted. The Start Bit is used to alert the receiver that a word of data is about to be sent, and to force the clock in the receiver into synchronization with the clock in the transmitter. These two clocks must be accurate enough to not have the frequency drift by more than 10% during the transmission of the remaining bits in the word. (This requirement was set in the days of mechanical teleprinters and is easily met by modern electronic equipment.)


FILTER CAPACITOR

Even though half wave & full wave rectifier give DC output, none of them provides a constant output voltage. For this we require to smoothen the waveform received from the rectifier. This can be done by using a capacitor at the output of the rectifier this capacitor is also called as “FILTER CAPACITOR” or “SMOOTHING CAPACITOR” or “RESERVOIR CAPACITOR”. Even after using this capacitor a small amount of ripple will remain.
We place the Filter Capacitor at the output of the rectifier the capacitor will charge to the peak voltage during each half cycle then will discharge its stored energy slowly through the load while the rectified voltage drops to zero, thus trying to keep the voltage as constant as possible


VOLTAGE REGULATOR

A Voltage regulator is a device which converts varying input voltage into a constant regulated output voltage. Voltage regulator can be of two types
1) Linear Voltage Regulator Also called as Resistive Voltage regulator because they dissipate the excessive voltage resistively as heat.
2) Switching Regulators.
They regulate the output voltage by switching the Current ON/OFF very rapidly. Since their output is either ON or OFF it dissipates very low power thus achieving higher efficiency as compared to linear voltage regulators. But they are more complex & generate high noise due to their switching action. For low level of output power switching regulators tend to be costly but for higher output wattage they are much cheaper than linear regulators


SPECIFIED TECHNOLOGY

GSM MODEM
The words, “Mobile Station” (MS) or “Mobile Equipment” (ME) are used for mobile terminals
Supporting GSM services.
A call from a GSM mobile station to the PSTN is called a “mobile originated call” (MOC) or
“Outgoing call”, and a call from a fixed network to a GSM mobile station is called a “mobile
Terminated call” (MTC) or “incoming call


What does GSM offer?

GSM supports voice calls and data transfer speeds of up to 9.6 kbit/s, together with the transmission of SMS (Short Message Service).
GSM operates in the 900MHz and 1.8GHz bands in Europe and the 1.9GHz and 850MHz bands in the US. The 850MHz band is also used for GSM and 3G in Australia, Canada and many South American countries. By having harmonised spectrum across most of the globe, GSM’s international roaming capability allows users to access the same services when travelling abroad as at home. This gives consumers seamless and same number connectivity in more than 218 countries


HISTORY

In 1980’s the analog cellular telephone systems were growing rapidly all throughout Europe, France and Germany. Each country defined its own protocols and frequencies to work on. For example UK used the Total Access Communication System (TACS), USA used the AMPS technology and Germany used the C-netz technology. None of these systems were interoperable and also they were analog in nature.
In 1982 the Conference of European Posts and Telegraphs (CEPT) formed a study group called the GROUPE SPECIAL MOBILE (GSM) The main area this focused on was to get the cellular system working throughout the world, and ISDN compatibility with the ability to incorporate any future enhancements. In 1989 the GSM transferred the work to the European Telecommunications Standards Institute (ETSI.) the ETS defined all the standards used in GSM.


BASICS OF WORKING AND SPECIFICATIONS OF GSM

The GSM architecture is nothing but a network of computers. The system has to partition available frequency and assign only that part of the frequency spectrum to any base transreceiver station and also has to reuse the scarce frequency as often as possible.
GSM uses TDMA and FDMA together. Graphically this can be shown below


ARCITECTURE AND BUILDIGN BLOCKS

GSM is mainly built on 3 building blocks. (Ref Fig. 2)
• GSM Radio Network – This is concerned with the signaling of the system. Hand-overs occur in the radio network. Each BTS is allocated a set of frequency channels.
• GSM Mobile switching Network – This network is concerned with the storage of data required for routing and service provision.
• GSM Operation and Maintenance – The task carried out by it include Administration and commercial operation , Security management, Network configuration, operation, performance management and maintenance tasks.


Serial communication

When a processor communicates with the outside world, it provides data in byte sized chunks. Computers transfer data in two ways: parallel and serial. In parallel data transfers, often more lines are used to transfer data to a device and 8 bit data path is expensive. The serial communication transfer uses only a single data line instead of the 8 bit data line of parallel communication which makes the data transfer not only cheaper but also makes it possible for two computers located in two different cities to communicate over telephone.
Serial data communication uses two methods, asynchronous and synchronous. The synchronous method transfers data at a time while the asynchronous transfers a single byte at a time. There are some special IC chips made by many manufacturers for data communications. These chips are commonly referred to as UART (universal asynchronous receiver-transmitter) and USART (universal synchronous asynchronous receiver transmitter). The AT89C51 chip has a built in UART.


LM35 Sensor Specification


The LM35 series are precision integrated-circuit LM35 temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 sensor thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 sensor does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C sensor is rated for a -40°


CONCLUSION


The project “REAL TIME INDUSTRIAL PROCESS CONTROL AND MONITORING USING GSM” has been successfully designed and tested. Integrating features of all the hardware components used have developed it. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit. Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.