Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: GENERAL INTRODUCTION
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
GENERAL INTRODUCTION

[attachment=65746]

1 Introduction

Humidity is the amount of water vapor in the air. Water vapor is the gaseous state of water and is invisible. Humidity indicates the likelihood ofprecipitation, dew, or fog. Higher humidity reduces the effectiveness of sweating in cooling the body by reducing the rate of evaporation of moisture from the skin. This effect is calculated in a heat index table or humidex, used during summer weather.
There are three main measurements of humidity: absolute, relative and specific. Absolute humidity is the water content of air. Relative humidity, expressed as a percent, measures the current absolute humidity relative to the maximum for that temperature. Specific humidity is a ratio of the water vapor content of the mixture to the total air content on a mass basis.


2Measurement

There are various devices used to measure and regulate humidity. A device used to measure humidity is called a psychrometer or hygrometer. Ahumidistat is a humidity-triggered switch, often used to control a dehumidifier. Humidity is also measured on a global scale using remotely placed satellites. These satellites are able to detect the concentration of water in thetroposphere at altitudes between 4 and 12 kilometers. Satellites that can measure water vapor have sensors that are sensitive to infrared radiation. Water vapor specifically absorbs and re-radiates radiation in this spectral band. Satellite water vapor imagery plays an important role in monitoring climate conditions (like the formation of thunderstorms) and in the development of future weather forecasts.


3 Climate

While humidity itself is a climate variable, it also interacts strongly with other climate variables. The humidity is affected by winds and by rainfall. At the same time, humidity affects the energy budget and thereby influences temperatures in two major ways. First, water vapor in the atmosphere contains "latent" energy. During transpiration or evaporation, this latent heat is removed from surface liquid, cooling the earth's surface. This is the biggest non-radiative cooling effect at the surface. It compensates for roughly 70% of the average net radiative warming at the surface. Second, water vapor is the most important of all greenhouse gases. Water vapor, like a green lens that allows green light to pass through it but absorbs red light, is a "selective absorber". Along with other greenhouse gases, water vapor is transparent to most solar energy, as you can literally see. But it absorbs the infrared energy emitted (radiated) upward by the earth's surface, which is the reason that humid areas experience very little nocturnal cooling but dry desert regions cool considerably at night. This selective absorption causes the greenhouse effect. It raises the surface temperature substantially above its theoretical radiative equilibrium temperature with the sun, and water vapor is the cause of more of this warming than any other greenhouse gas.

1.4 Air density and volume

Humidity depends on water vaporization and condensation, which, in turn, mainly depends on temperature. Therefore, when applying more pressure to a gas saturated with water, all components will initially decrease in volume approximately according to the ideal gas law. However, some of the water will condense until returning to almost the same humidity as before, giving the resulting total volume deviating from what the ideal gas law predicted. Conversely, decreasing temperature would also make some water condense, again making the final volume deviate from predicted by the ideal gas law. Therefore, gas volume may alternatively be expressed as the dry volume, excluding the humidity content. This fraction more accurately follows the ideal gas law. On the contrary the saturated volume is the volume a gas mixture would have if humidity was added to it until saturation (or 100% relative humidity). Humid air is less dense than dry air because a molecule of water (M ≈ 18 u ) is less massive than either a molecule of nitrogen (M ≈ 28) or a molecule of oxygen (M ≈ 32). About 78% of the molecules in dry air are nitrogen (N2). Another 21% of the molecules in dry air are oxygen (O2). The final 1% of dry air is a mixture of other gases.
For any gas, at a given temperature and pressure, the number of molecules present in a particular volume is constant – see ideal gas law. So when water molecules (vapor) are introduced into that volume of dry air, the number of air molecules in the volume must decrease by the same number, if the temperature and pressure remain constant. (The addition of water molecules, or any other molecules, to a gas, without removal of an equal number of other molecules, will necessarily require a change in temperature, pressure, or total volume; that is, a change in at least one of these three parameters. If temperature and pressure remain constant, the volume increases, and the dry air molecules that were displaced will initially move out into the additional volume, after which the mixture will eventually become uniform through diffusion.) Hence the mass per unit volume of the gas—its density—decreases.


) Electronics

Many electronic devices have humidity specifications, for example, 5% to 95%. At the top end of the range, moisture may increase the conductivity of permeable insulators leading to malfunction. Too low humidity may make materials brittle. A particular danger to electronic items, regardless of the stated operating humidity range, is condensation. When an electronic item is moved from a cold place (e.g. garage, car, shed, an air conditioned space in the tropics) to a warm humid place (house, outside tropics), condensation may coat circuit boards and other insulators, leading toshort circuit inside the equipment. Such short circuits may cause substantial permanent damage if the equipment is powered on before the condensation has evaporated. A similar condensation effect can often be observed when a person wearing glasses comes in from the cold (i.e. the glasses become foggy). It is advisable to allow electronic equipment to acclimatise for several hours, after being brought in from the cold, before powering on. Some electronic devices can detect such a change and indicate, when plugged in and usually with a small droplet symbol, that they cannot be used until the risk from condensation has passed. In situations where time is critical, increasing air flow through the device's internals when, such as removing the side panel from a PC case and directing a fan to blow into the case will reduce significantly the time needed to acclimatise to the new environment.
In contrast, a very low humidity level favors the build-up of static electricity, which may result in spontaneous shutdown of computers when discharges occur. Apart from spurious erratic function, electrostatic discharges can cause dielectric breakdown in solid state devices, resulting in irreversible damage. Data centers often monitor relative humidity levels for these reasons.


Implementation Details of Humidity sensing project

Instrumentation is the art of measuring the value of some plant parameter, pressure, flow, level or temperature to name a few and supplying a signal that is proportional to the measured parameter.When engineers design a system that employs sensors, they mathematically model the response of the sensor to the physical parameter being sensed, they mathematically model the desired response of the signal-conditioning circuitry to the sensor output, and they then implement those mathematical models in electronic circuitry. All that modeling is good, but it’s important to remember that the models are approximations (albeit usually fairly accurate approximations) to the real-world response of the implementation. It would be far better to keep as much of the system as possible actually in the mathematical realm; numbers, after all, don’t drift with time and can be manipulated precisely and easily. In fact, the discipline of digital signal processing or DSP, in which signals are manipulated mathematically rather than with electronic circuitry, is well established and widely practiced. Standard transformations, such as filtering to remove unwanted noise or frequency mappings to identify particular signal components, are easily handled using DSP. Furthermore, using DSP principles we can perform operations that would be impossible using even the most advanced electronic circuitry.

standard sensors usually need to be physically close to the control and monitoring systems that receive their measurements. In general, the farther a sensor is from the system using its measurements, the less useful the measurements are. This is due primarily to the fact that sensor signals that are run long distances are susceptible to electronic noise, thus degrading the quality of the readings at the receiving end. In many cases, sensors are connected to the monitoring and control systems using specialized (and expensive) cabling; the longer this cabling is, the more costly the installation, which is never popular with end users. A related problem is that sharing sensor outputs among multiple systems becomes very difficult, particularly if those systems are physically separated. This inability to share outputs may not seem important, but it severely limits the ability to scale systems to large installations, resulting in much higher costs to install and support multiple redundant sensors.While sensors come in a variety of flavors (electronic, mechanical, chemical, optical, etc.), we’ll focus in this book on electronic sensor devices, for the simple but powerful reason that we can interface their outputs to a computing element (usually a microprocessor) easily. It’s the computing element that allows us to add intelligence to the sensor and, as we’ll see, that’s a very valuable addition.

Of all common environmental parameters, humidity is perhaps the least understood and most difficult to measure. The most common electronic humidity detection methods, albeit highly accurate, are not obvious and tend to be expensive and complex. Accurate humidity measurement is vital to a number of diverse areas, including food processing, paper and lumber production, pollution monitoring and chemical manufacturing. Despite these and other applications, little design oriented material has appeared on circuitry to measure humidity. This is primarily due to the small number of transducers available and a generally accepted notion that they are difficult and expensive to signal condition. Some of the more common ways of expressing humidity related information include wet bulbtemperature, dew point and frost point. Wet bulb temperature refers to the minimum temperature reached by a wetted thermometer bulb in a stream of air. The dew point is the point at which water saturation occurs in air. It is evidenced by water condantation. When temperatures below 0°C are required to produce this phenomenon it is called the frost point.



CONCLUSION

1. Idea of hardware and software of the microcontroller 8051
2. The function and features of ADC0804 are discussed, we came to know how these components can be interfaced with microcontroller.
3. After going through this project we felt easy to work with LCD.
We have implemented different techniques at the grass root level which can be integrated to form the complex system.