Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Supercomputer
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Supercomputer


[attachment=66211]

The Blue Gene/P supercomputer at Argonne National Lab runs over 250,000 processors using normal data center air conditioning, grouped in 72 racks/cabinets connected by a high-speed optical network.

A supercomputer is a computer at the frontline of contemporary processing capacity--particularly speed of calculation.


HISTORY


Preserved at the Deutsches Museum
The history of supercomputing goes back to the 1960s when a series of computers at Control Data Corporation (CDC) were designed by Seymour Cray to use innovative designs and parallelism to achieve superior computational peak performance. The CDC 6600, released in 1964, is generally considered the first supercomputer.
Cray left CDC in 1972 to form his own company. Four years after leaving CDC, Cray delivered the 80 MHz Cray 1 in 1976, and it became one of the most successful supercomputers in history. The Cray-2 released in 1985 was an 8 processor liquid cooled computer and Fluor inert was pumped through it as it operated. It performed at 1.9 gigaflops and was the world's fastest until 1990.
While the supercomputers of the 1980s used only a few processors, in the 1990s, machines with thousands of processors began to appear both in the United States and in Japan, setting new computational performance records. Fujitsu's Numerical Wind Tunnel supercomputer used 166 vector processors to gain the top spot in 1994 with a peak speed of 1.7 gigaflops per processor. The Hitachi SR2201 obtained a peak performance of 600 gigaflops in 1996 by using 2048 processors connected via a fast three dimensional crossbar network. The Intel Paragon could have 1000 to 4000 Intel i860 processors in various configurations, and was ranked the fastest in the world in 1993. The Paragon was a MIMD machine which connected processors via a high speed two dimensional mesh, allowing processes to execute on separate nodes; communicating via the Message Passing Interface.


The CPU share of TOP500


Systems with a massive number of processors generally take one of two paths: in one approach, known as grid computing, the processing power of a large number of computers in distributed, diverse administrative domains, is opportunistically used whenever a computer is available.


Operating systems


Main article: Supercomputer operating systems
Since the end of the 20th century, supercomputer operating systems have undergone major transformations, as sea changes have taken place in supercomputer architecture. While early operating systems were custom tailored to each supercomputer to gain speed, the trend has been to move away from in-house operating systems to the adaptation of generic software such as Linux.
Given that modern massively parallel supercomputers typically separate computations from other services by using multiple types of nodes, they usually run different operating systems on different nodes, e.g. using a small and efficient lightweight kernel such as CNK or CNL on compute nodes, but a larger system such as a Linux-derivative on server and I/O nodes.