Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: TURBOCHARGER SEMINAR REPORT
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
TURBOCHARGER

[attachment=68045]

TURBOCHARGER


A turbocharger is a turbine- driven forced induction device that makes an engine more efficient and produce more power for its size by forcing extra air into the combustion chamber. A turbocharged engine is more powerful and efficient than a naturally aspirated engine, because the turbine forces more air, and proportionately more fuel, into the combustion chamber than atmospheric pressure alone.
Turbochargers were originally known as turbosuperchargers when all forced induction devices were classified as superchargers. Nowadays the term "supercharger" is usually applied to only mechanically driven forced induction devices. The key difference between a turbocharger and a conventional supercharger is that the latter is mechanically driven from the engine, often from a belt connected to the crankshaft, whereas a turbocharger is powered by a turbine that is driven by the engine's exhaust gas. Compared to a mechanically-driven supercharger, turbochargers tend to be more efficient, but less responsive. Twincharger refers to an engine with both a supercharger and a turbocharger.

Turbochargers are commonly used on truck, car, train, aircraft, and construction equipment engines. They are popularly used with Otto cycle and Diesel cycle internal combustion engines. They have also been found useful in automotive fuel cells.

HISTORY


Forced induction dates from the late 19th century, when Gottlieb Daimler patented the technique of using a gear-driven pump to force air into an internal combustion engine in 1885. The turbocharger was invented by Swiss engineer Alfred Büchi (1879-1959), the head of Diesel engine research at GebrüderSulzer engine manufacturing company in Winterthur, who received a patent in 1905 for using a compressor driven by exhaust gasses to force air into an internal combustion engine to increase power output, but it took another 20 years for the idea to come to fruition. During World War I French engineer AugusteRateau fitted turbochargers to Renault engines powering various French fighters with some success. In 1918, General Electric engineer Sanford Alexander Moss attached a turbocharger to a V12 Liberty aircraft engine. The engine was tested at Pikes Peak in Colorado at 14,000 ft (4,300 m) to demonstrate that it could eliminate the power loss usually experienced in internal combustion engines as a result of reduced air pressure and density at high altitude. General Electric called the system turbosupercharging. At the time, all forced induction devices were known as superchargers, however more recently the term "supercharger" is usually applied to only mechanically-driven forced induction devices.
Turbochargers were first used in production aircraft engines such as the Napier Lioness in the 1920s, although they were less common than engine-driven centrifugal superchargers. Ships and locomotives equipped with turbocharged Diesel engines began appearing in the 1920s. Turbochargers were also used in aviation, most widely used by the United States. During World War II, notable examples of U.S. aircraft with turbochargers include the B-17 Flying Fortress, B-24 Liberator, P-38 Lightning, and P-47 Thunderbolt. The technology was also used in experimental fittings by a number of other manufacturers, notably a variety of Focke-WulfFw 190 models, but the need for advanced high-temperature metals in the turbine kept them out of widespread useTurbocharging versus supercharging.

SUPERCHARGER


In contrast to turbochargers, superchargers are mechanically driven by the engine. Belts, chains, shafts, and gears are common methods of powering a supercharger, placing a mechanical load on the engine. For example, on the single-stage single-speed supercharged Rolls-Royce Merlin engine, the supercharger uses about 150 horsepower (110 kW). Yet the benefits outweigh the costs; for the 150 hp (110 kW) to drive the supercharger the engine generates an additional 400 horsepower, a net gain of 250 hp (190 kW). This is where the principal disadvantage of a supercharger becomes apparent; the engine must withstand the net power output of the engine plus the power to drive the supercharger.
Another disadvantage of some superchargers is lower adiabatic efficiency as compared to turbochargers (especially Roots-type superchargers). Adiabatic efficiency is a measure of a compressor's ability to compress air without adding excess heat to that air. The compression process always produces heat as a byproduct of that process; however, more efficient compressors produce less excess heat. Roots superchargers impart significantly more heat to the air than turbochargers. Thus, for a given volume and pressure of air, the turbocharged air is cooler, and as a result denser, containing more oxygen molecules, and therefore more potential power than the supercharged air. In practical application the disparity between the two can be dramatic, with turbochargers often producing 15% to 30% more power based solely on the differences in adiabatic efficiency.




TURBOCHARGER LAG


Turbocharger lag ("turbo lag") is the time required to change power output in response to a throttle change, noticed as a hesitation or slowed throttle response when accelerating as compared to a naturally aspirated engine. This is due to the time needed for the exhaust system and turbocharger to generate the required boost. Inertia, friction, and compressor load are the primary contributors to turbocharger lag. Superchargers do not suffer this problem, because the turbine is eliminated due to the compressor being directly powered by the engine.
Turbocharger applications can be categorized into to those that require changes in output power (such as automotive) and those that do not (such as marine, aircraft, commercial automotive, industrial, engine-generators, and locomotives). While important to varying degrees, turbocharger lag is most problematic in applications that require rapid changes in power output. Engine designs reduce lag in a number of ways:
Lowering the rotational inertia of the turbocharger by using lower radius parts and ceramic and other lighter materials



TURBINE


This section may require cleanup to meet Wikipedia's quality standards. The specific problem is: no description of the type and properties of the turbines, poor choice of illustrations. (September 2012)
Energy provided for the turbine work is converted from the enthalpy and kinetic energy of the gas. The turbine housings direct the gas flow through the turbine as it spins at up to 250,000 rpm. The size and shape can dictate some performance characteristics of the overall turbocharger. Often the same basic turbocharger assembly is available from the manufacturer with multiple housing choices for the turbine, and sometimes the compressor cover as well. This lets the balance between performance, response, and efficiency be tailored to the application.




CENTER HOUSING/HUB ROTATING ASSEMBLY


The center hub rotating assembly (CHRA) houses the shaft that connects the compressor impeller and turbine. It also must contain a bearing system to suspend the shaft, allowing it to rotate at very high speed with minimal friction. For instance, in automotive applications the CHRA typically uses a thrust bearing or ball bearing lubricated by a constant supply of pressurized engine oil. The CHRA may also be considered "water-cooled" by having an entry and exit point for engine coolant. Water-cooled models use engine coolant to keep lubricating oil cooler, avoiding possible oil coking (destructive distillation of engine oil) from the extreme heat in the turbine. The development of air-foil bearings removed this risk.
Ball bearings designed to support high speeds and temperatures are sometimes used instead of fluid bearings to support the turbine shaft. This helps the turbocharger accelerate more quickly and reduces turbo lag. Some variable nozzle turbochargers use a rotary electric actuator, which uses a direct stepper motor to open and close the vanes, rather than pneumatic controllers that operate based on air pressure.