Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: SECURE AND PRACTICAL OUTSOURCING OF LINEAR PROGRAMMING IN CLOUD COMPUTING
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
SECURE AND PRACTICAL OUTSOURCING OF LINEAR
PROGRAMMING IN CLOUD COMPUTING


[attachment=68214]


Abstract



Focusing on engineering computing and optimization tasks, this paper investigates secure outsourcing of widely applicable linear programming (LP) computations. In order to achieve practical efficiency, our mechanism design explicitly decomposes the LP computation outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to explore appropriate security/ efficiency tradeoff via higher-level abstraction of LP computations than the general circuit representation. In particular, by formulating private data owned by the customer for LP problem as a set of matrices and vectors, we are able to develop a set of efficient privacy-preserving problem transformation techniques, which allow customers to transform original LP problem into some arbitrary one while protecting sensitive input/output information. To validate the computation result, we further explore the fundamental duality theorem of LP computation and derive the necessary and sufficient conditions that correct result must satisfy. Such result verification mechanism is extremely efficient and incurs close-to-zero additional cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate practicability of our mechanism design.




PROPOSED SYSTEM


Practically efficient mechanisms for secure outsourcing of linear programming (LP) computations. Linear programming is an algorithmic and computational tool which captures the first order effects of various system parameters that should be optimized, and is essential to engineering optimization. It has been widely used in various engineering disciplines that analyze and optimize real-world systems, such as packet routing, flow control, power management of data centers. Because LP computations require a substantial amount of computational power and usually involve confidential data, we propose to explicitly decompose the LP computation outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The flexibility of such decomposition allows us to explore higher-level abstraction of LP computations than the general circuit representation for the practical efficiency.


Advantage:


Security is the primary obstacle that prevents the wide adoption of this promising computing model, especially for customers when their confidential data are consumed and produced during the computation.



CONCLUSION


We formalize the problem of securely outsourcing LP computations in cloud computing, and provide such a practical mechanism design which fulfills input/output privacy, cheating resilience, and efficiency. By explicitly decomposing LP computation outsourcing into public LP solvers and private data, our mechanism design is able to explore appropriate security/efficiency tradeoffs via higher level LP computation than the general circuit representation. We develop problem transformation techniques that enable customers to secretly transform the original LP into some arbitrary one while protecting sensitive input/output information. We also investigate duality theorem and derive a set of necessary and sufficient condition for result verification. Such a cheating resilience design can be bundled in the overall mechanism with close-to-zero additional overhead. Both security analysis and experiment results demonstrate the immediate practicality of the proposed mechanism