Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: AUTOMATED GUIDED VEHICHLE
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
[attachment=72695]



\Introduction
Automated guided vehicles (AGVs) increase efficiency and reduce costs by helping to automate a manufacturing facility or warehouse. The first AGV was invented by Barrett Electronics in 1953. The AGV can tow objects behind them in trailers to which they can autonomously attach. The trailers can be used to move raw materials or finished product. The AGV can also store objects on a bed. The objects can be placed on a set of motorized rollers (conveyor) and then pushed off by reversing them. AGVs are employed in nearly every industry, including, pulp, paper, metals, newspaper, and general manufacturing. Transporting materials such as food, linen or medicine in hospitals is also done.
An AGV can also be called a laser guided vehicle (LGV). In Germany the technology is also called Fahrerlose Transportsysteme (FTS) and in Sweden förarlösa truckar. Lower cost versions of AGVs are often called Automated Guided Carts (AGCs) and are usually guided by magnetic tape. AGCs are available in a variety of models and can be used to move products on an assembly line, transport goods throughout a plant or warehouse, and deliver loads.




Navigation

Wired:
A slot is cut in to the floor and a wire is placed approximately 1 inch below the surface. This slot is cut along the path the AGV is to follow. This wire is used to transmit a radio signal. A sensor is installed on the bottom of the AGV close to the ground. The sensor detects the relative position of the radio signal being transmitted from the wire. This information is used to regulate the steering circuit, making the AGV follow the wire.

Guide tape:
AGVs (some known as automated guided carts or AGCs) use tape for the guide path. The tapes can be one of two styles: magnetic or colored. The AGC is fitted with the appropriate guide sensor to follow the path of the tape. One major advantage of tape over wired guidance is that it can be easily removed and relocated if the course needs to change.

Laser target navigation:
The navigation is done by mounting reflective tape on walls, poles or fixed machines. The AGV carries a laser transmitter and receiver on a rotating turret. The laser is transmitted and received by the same sensor. The angle and (sometimes) distance to any reflectors that in line of sight and in range are automatically calculated.

Inertial (Gyroscopic) navigation:
Another form of an AGV guidance is inertial navigation. With inertial guidance, a computer control system directs and assigns tasks to the vehicles. Transponders are embedded in the floor of the work place.



Natural features (Natural Targeting) navigation:
Navigation without retrofitting of the workspace is called Natural Features or Natural Targeting Navigation. One method uses one or more range-finding sensors, such as a laser range-finder, as well as gyroscopes or inertial measurement units with Monte-Carlo/Markov localization techniques to understand where it is as it dynamically plans the shortest permitted path to its goal.

Vision guidance:
Vision-Guided AGVs can be installed with no modifications to the environment or infrastructure. They operate by using cameras to record features along the route, allowing the AGV to replay the route by using the recorded features to navigate. Vision-Guided AGVs use Evidence Grid technology, an application of probabilistic volumetric sensing, and was invented and initially developed by Dr. Moravec at Carnegie Mellon University.


Geoguidance:
A geoguided AGV recognizes its environment to establish its location. Without any infrastructure, the forklift equipped with geoguidance technology detects and identifies columns, racks and walls within the warehouse.

Steering control
To help an AGV navigate it can use three different steer control systems.[5] The differential speed control is the most common. In this method there are two independent drive wheels. Each drive is driven at different speeds in order to turn or the same speed to allow the AGV to go forwards or backwards. The AGV turns in a similar fashion to a tank.

Path decision
AGVs have to make decisions on path selection. This is done through different methods: frequency select mode (wired navigation only), and path select mode (wireless navigation only) or via a magnetic tape on the floor not only to guide the AGV but also to issue steering commands and speed commands.



Frequency select mode:
Frequency select mode bases its decision on the frequencies being emitted from the floor. When an AGV approaches a point on the wire which splits the AGV detects the two frequencies and through a table stored in its memory decides on the best path.

Path select mode:
An AGV using the path select mode chooses a path based on preprogrammed paths. It uses the measurements taken from the sensors and compares them to values given to them by programmers. When an AGV approaches a decision point it only has to decide whether to follow path 1, 2, 3, etc.



Magnetic tape mode:
The magnetic tape is laid on the surface of the floor or buried in a 10mm channel; not only does it provide the path for the AGV to follow but also strips of the tape in different combos of polarity, sequence, and distance laid alongside the track tell the AGV to change lane, speed up, slow down, and stop.

Traffic control:
Flexible manufacturing systems containing more than one AGV may require it to have traffic control so the AGV’s will not run into one another. Traffic control can be carried out locally or by software running on a fixed computer elsewhere in the facility. Local methods include zone control, forward sensing control, and combination control. Each method has its advantages and disadvantages.

Zone control:
Zone control is the favorite of most environments because it is simple to install and easy to expand.[1] Zone control uses a wireless transmitter to transmit a signal in a fixed area. Each AGV contains a sensing device to receive this signal and transmit back to the transmitter.
Forward sensing control

Forklift AGV with safety laser sensors. (fully automated.)
Forward sensing control uses collision avoidance sensors to avoid collisions with other AGV in the area. These sensors include: sonic, which work like radar; optical, which uses an infrared sensor; and bumper, physical contact sensor. Most AGVs are equipped with a bumper sensor of some sort as a fail safe.

Combination control:
Combination control sensing is using collision avoidance sensors as well as the zone control sensors. The combination of the two helps to prevent collisions in any situation. For normal operation the zone control is used with the collision avoidance as a fail safe.

System management:
Industries with AGVs need to have some sort of control over the AGVs. There are three main ways to control the AGV: locator panel, CRT color graphics display, and central logging and report.[1]
Vehicle types:
1. Towing Vehicles were the first type introduced and are still a very popular type today. Towing vehicles can pull a multitude of trailer types and have capacities ranging from 8,000 pounds to 60,0000 pounds




Common AGV applications:
Automated Guided Vehicles can be used in a wide variety of applications to transport many different types of material including pallets, rolls, racks, carts, and containers. AGVs excel in applications with the following characteristics:
1. Repetitive movement of materials over a distance
2. Regular delivery of stable loads
3. Medium throughput/volume
4. When on-time delivery is critical and late deliveries are causing inefficiency
5. Operations with at least two shifts
6. Processes where tracking material is important