Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Field-programmable gate array
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
field-programmable gate array is a semiconductor device containing programmable logic components called "logic blocks", and programmable interconnects. Logic blocks can be programmed to perform the function of basic logic gates such as AND, and XOR, or more complex combinational functions such as decoders or mathematical functions. In most FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or more complete blocks of memory. A hierarchy of programmable interconnects allows logic blocks to be interconnected as needed by the system designer, somewhat like a one-chip programmable breadboard. Logic blocks and interconnects can be programmed by the customer or designer, after the FPGA is manufactured, to implement any logical function”hence the name "field-programmable". FPGAs are usually slower than their application-specific integrated circuit (ASIC) counterparts, cannot handle as complex a design, and draw more power (for any given semiconductor process). But their advantages include a shorter time to market, ability to re-program in the field to fix bugs, and lower non-recurring engineering costs. Vendors can sell cheaper, less flexible versions of their FPGAs which cannot be modified after the design is committed. The designs are developed on regular FPGAs and then migrated into a fixed version that more resembles an ASIC. "Complex Programmable Logic Device" (CPLDs) are an alternative for simpler designs. They also retain their programming over powerdowns. To configure ("program") an FPGA or CPLD you specify how you want the chip to work with a logic circuit diagram or a source code using a hardware description language (HDL). The HDL form might be easier to work with when handling large structures because it's possible to just specify them numerically rather than having to draw every piece by hand. On the other hand, schematic entry can allow for easier visualisation of a design. Going from schematic/HDL source files to actual configuration: The source files are fed to a software suite from the FPGA/CPLD vendor that through different steps will produce a file. This file is then transferred to the FPGA/CPLD via a serial interface (JTAG) interface or to external memory device like an EEPROM.