Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: BEHAVIOUR OF REINFORCED CONCRETE BEAMS WITH COCONUT SHELL AS COARSE AGGREGATES
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Presented by:
M. Sekar, L.M.Poornima

[attachment=12744]
The high cost of conventional building materials is a major factor affecting housing delivery in world. This has necessitated research into alternative materials of construction. The project paper aims at analyzing flexural and compressive strength characteristics of concrete produced using crushed, granular coconut as substitutes for conventional coarse aggregate with partial replacement using M30 grade concrete. Beams are casted, tested and their physical and mechanical properties are determined. The main objective is to encourage the use of these ‘seemingly’ waste products as construction materials in low-cost housing. It is also expected to serve the purpose of encouraging housing developers in investing these materials in house construction.
INTRODUCTION
The high demand for concrete in the construction using normal weight aggregates such as gravel and granite drastically reduces the natural stone deposits and this has damaged the environment thereby causing ecological imbalance (Short and Kinniburgh, 1978).Therefore, there is a need to explore and to find out suitable replacement material to substitute the natural stone.In developed countries, the construction industries have identified many artificial and natural lightweight aggregates (LWA) that have replaced conventional aggregates thereby reducing the size of structural members. This has brought immense change in the development of high rise structures using LWC. However, in Asia the construction industry is yet to utilize the advantage of LWC in the construction of high rise structures. Coconut Shell (CS) are not commonly used in the construction industry but are often dumped as agricultural wastes. It was concluded that the CSs were more suitable as low strength-giving lightweight aggregate when used to replace common coarse aggregate in concrete production.Gunasekaran studied the properties of concrete using coconut shell as coarse aggregate were investigated in an experimental study. Compressive, flexural, splitting tensile strengths, impact resistance and bond strength were measured and compared with the theoretical values as recommended by the standards.The bond properties were determined through pull-out test. Coconut shell concrete can be classified under structural lightweight concrete. O.T. Olateju in this paper reports the exploratory study on the suitability of the periwinkle shells as partial or in concrete works. Physical and mechanical properties of periwinkle shell and crushed granite were determined and compared. A total of 300 concrete cubes of size 150 × 150 ×150 mm3 with different percentages by weight of crushed granite to periwinkle shells as coarse aggregate in the order 100:0, 75:25, 50:50, 25:75 and 0:100 were cast, tested and their physical and mechanical properties determined.Majid Ali in this paper presents the versatility of coconut fibres and its applications in different branches of engineering, particularly in civil engineering as a construction material.Not only the physical, chemical and mechanical properties of coconut fibres are shown; but also properties of composites (cement pastes, mortar and/or concrete etc), in which coconut fibres are used as reinforcement, are discussed. Coconut fibres reinforced composites have been used as cheap and durable non structural elements. The aim of this review is to spread awareness of coconut fibres as a construction material in civil engineering.
EXPERIMENTAL INVESTIGATIONS
Test specimen details

All the ingredients of the mix were weighed and mixed in the concrete mixture machine as per the concrete mix design. The steel mould was used for casting the beam specimens. Before mixing the concrete, the moulds were kept ready by placing it on a horizontal surface. The sides and bottom of all the moulds were properly greased for easy demoulding. The concrete was placed in the mould in three layers and compaction was done using needle vibrator. Proper care was taken for uniform compaction and surface finish throughout the beam.
BEAM DENTITY PROPERTY
CC PPC
CS 25% PPC
CS 50% PPC
CS 75% PPC
Test setup
The experiments were conducted on a loading frame of capacity 400 kN. The beams were tested as a simply supported beam with a clear span of 2500mm and it is subjected to two point loading. The loading set-up consists of a load cell, hydraulic jack and a hand pump to apply the load. The experimental set-up is shown below. Steel pellets for the Demec gauge strain measurement was pasted on the compression side and tension side.