Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Pixie Dust
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Definition

The key to IBM's new data storage breakthrough is a threeatom-thick layer of the element ruthenium, a precious metal similar to platinum, sandwiched between two magnetic layers. That only a few atoms could have such a dramatic impact caused some IBM scientists to refer to the ruthenium layer informally as "pixie dust". Known technically as"antiferromagnetically-coupled (AFC) media," the new multilayer coating is expected to permit hard disk drives to store 100 billion bits (gigabits) of data per square inch of disk area by 2003. Current hard drives can store 20 gigabits of data per square inch. IBM began shipping Travelstar hard drives in May 2001 that are capable of storing 25.7 gigabits per square inch. Drives shipped later in the year are expected to be capable of 33% greater density.


SUPERPARAMAGNETIC EFFECT

Computers get better and better, faster and faster; and, of all computer components, probably the greatest rate of evolution belongs to the stalwart hard drive. On a daily basis, the storage capacity and speed of hard drives increases, while their cost just keeps on shrinking. This is one of those rare situations in which both consumers and companies profit; but something called superparamagnetic effect may soon bring an end to this golden age.

As hard drives become capable of storing more information and accessing it at faster speeds, their data becomes more susceptible to corruption. This data-density barrier is known as the superparamagnetic effect (or SPE). Before going on to say more about SPE, though, it might be helpful (and scenic) to take a brief detour to examine the technology at the hub of your average hard drive.

Today's hard drive resembles a small record player that's capable of stacking its disks, or platters, to hold up to eight of them at a time. Each platter is covered with a magnetic film that is ingrained with tiny particles called bits. When a read-write head (looking like the needle of a record player) passes over the bits, it either magnetically aligns the particles to record information (turning them into series of 1's and 0's), or it reads them in order to access previously-stored data. These operations take place at phenomenal speeds; the platters spin around thousands of times per minute, and both sides of them are scanned simultaneously by read-write heads.

Advances in hard drive technology continue to increase the number of bits that fit onto each platter. Bits are getting smaller and smaller, making for greater storage capacity, but also bring the SPE barrier closer and closer. So what exactly does SPE do? Basically, SPE destabilizes the 0 or 1- orientation of magnetic bits, resulting in corruption of stored data.

The superparamagnetic effect originates from the shrinking volume of magnetic grains that compose the hard-disk media, in which data bits are stored as alternating magnetic orientations. To increase data-storage densities while maintaining acceptable performance, designers have shrunk the media's grain diameters and decreased the thickness of the media. For media limited noise signal/noise ratio is proportional to square root of N, where N is the number of media grains per bit.