Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Sonar FULL REPORT
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Sonar

[attachment=26018]


History

Although some animals (dolphins and bats) have used sound for communication and object detection for millions of years, use by humans in the water is initially recorded by Leonardo Da Vinci in 1490: a tube inserted into the water was said to be used to detect vessels by placing an ear to the tube.[1]
In the 19th century an underwater bell was used as an ancillary to lighthouses to provide warning of hazards.
The use of sound to 'echo locate' underwater in the same way as bats use sound for aerial navigation seems to have been prompted by the Titanic disaster of 1912. The world's first patent for an underwater echo ranging device was filed at the British Patent Office by English meteorologist Lewis Richardson a month after the sinking of the Titanic,[2] and a German physicist Alexander Behmobtained a patent for an echo sounder in 1913.
The Canadian engineer Reginald Fessenden, while working for the Submarine Signal Company in Boston, built an experimental system beginning in 1912, a system later tested in Boston Harbor, and finally in 1914 from the U.S. Revenue (now Coast Guard) Cutter Miami on the Grand Banks off Newfoundland Canada.[2][3] In that test, Fessenden demonstrated depth sounding, underwater communications (Morse Code) and echo ranging (detecting an iceberg at two miles (3 km) range).[4][5] The so-called Fessenden oscillator, at ca. 500 Hz frequency, was unable to determine the bearing of the berg due to the 3 metre wavelength and the small dimension of the transducer's radiating face (less than 1 metre in diameter). The ten Montreal-built British H class submarines launched in 1915 were equipped with a Fessenden oscillator.[6]
During World War I the need to detect submarines prompted more research into the use of sound. The British made early use of underwater hydrophones, while the French physicist Paul Langevin, working with a Russian immigrant electrical engineer, Constantin Chilowski, worked on the development of active sound devices for detecting submarines in 1915 using quartz. Although piezoelectricand magnetostrictive transducers later superseded the electrostatic transducers they used, this work influenced future designs. Lightweight sound-sensitive plastic film and fibre optics have been used for hydrophones (acousto-electric transducers for in-water use), while Terfenol-D and PMN (lead magnesium niobate) have been developed for projectors.

ASDIC

In 1916, under the British Board of Invention and Research, Canadian physicist Robert William Boyle took on the active sound detection project with A B Wood, producing a prototype for testing in mid 1917. This work, for the Anti-Submarine Division of the British Naval Staff, was undertaken in utmost secrecy, and used quartz piezoelectric crystals to produce the world's first practical underwater active sound detection apparatus. To maintain secrecy no mention of sound experimentation or quartz was made - the word used to describe the early work ('supersonics') was changed to 'ASD'ics, and the quartz material to 'ASD'ivite: hence the British acronym ASDIC. In 1939, in response to a question from the Oxford English Dictionary, the Admiralty made up the story that it stood for 'Allied Submarine Detection Investigation Committee', and this is still widely believed, though no committee bearing this name has been found in the Admiralty archives.[7]
By 1918, both France and Britain had built prototype active systems. The British tested their ASDIC on HMS Antrim in 1920, and started production in 1922. The 6th Destroyer Flotilla had ASDIC-equipped vessels in 1923. An anti-submarine school, HMS Osprey, and a training flotilla of four vessels were established on Portland in 1924. The US Sonar QB set arrived in 1931.
By the outbreak of World War II, the Royal Navy had five sets for different surface ship classes, and others for submarines, incorporated into a complete anti-submarine attack system. The effectiveness of early ASDIC was hamstrung by the use of the depth charge as an anti-submarine weapon. This required an attacking vessel to pass over a submerged contact before dropping charges over the stern, resulting in a loss of ASDIC contact in the moments leading up to attack. The hunter was effectively firing blind, during which time a submarine commander could take evasive action. This situation was remedied by using several ships cooperating and by the adoption of "ahead throwing weapons", such as Hedgehog and later Squid, which projected warheads at a target ahead of the attacker and thus still in ASDIC contact. Developments during the war resulted in British ASDIC sets which used several different shapes of beam, continuously covering blind spots. Later, acoustic torpedoes were used.
At the start of World War II, British ASDIC technology was transferred for free to the United States. Research on ASDIC and underwater sound was expanded in the UK and in the US. Many new types of military sound detection were developed. These included sonobuoys, first developed by the British in 1944 under the codename High Tea, dipping/dunking sonar and mine detection sonar. This work formed the basis for post war developments related to countering the nuclear submarine. Work on sonar had also been carried out in the Axis countries, notably in Germany, which included countermeasures. At the end of World War II this German work was assimilated by Britain and the US. Sonars have continued to be developed by many countries, including Russia, for both military and civil uses. In recent years the major military development has been the increasing interest in low frequency active systems.

SONAR

During the 1930s American engineers developed their own underwater sound detection technology and important discoveries were made, such as thermoclines, that would help future development.[8]After technical information was exchanged between the two countries during the Second World War, Americans began to use the term SONAR for their systems, coined as the equivalent of RADAR.

Performance factors

The detection, classification and localisation performance of a sonar depends on the environment and the receiving equipment, as well as the transmitting equipment in an active sonar or the target radiated noise in a passive sonar.

Sound propagation

Sonar operation is affected by variations in sound speed, particularly in the vertical plane. Sound travels more slowly in fresh water than in sea water, though the difference is small. The speed is determined by the water's bulk modulus and mass density. The bulk modulus is affected by temperature, dissolved impurities (usually salinity), and pressure. The density effect is small. The speed of sound (in feet per second) is approximately:
4388 + (11.25 × temperature (in °F)) + (0.0182 × depth (in feet)) + salinity (in parts-per-thousand ).
This empirically derived approximation equation is reasonably accurate for normal temperatures, concentrations of salinity and the range of most ocean depths. Ocean temperature varies with depth, but at between 30 and 100 meters there is often a marked change, called the thermocline, dividing the warmer surface water from the cold, still waters that make up the rest of the ocean. This can frustrate sonar, because a sound originating on one side of the thermocline tends to be bent, or refracted, through the thermocline. The thermocline may be present in shallower coastal waters. However, wave action will often mix the water column and eliminate the thermocline.