Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: 8-bit Microcontroller with 8K Bytes Flash
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
8-bit Microcontroller with 8K Bytes Flash
[attachment=31228]
Features
• Compatible with MCS-51™ Products
• 8K Bytes of In-System Reprogrammable Flash Memory
• Endurance: 1,000 Write/Erase Cycles
• Fully Static Operation: 0 Hz to 24 MHz
• Three-level Program Memory Lock
• 256 x 8-Bit Internal RAM
• 32 Programmable I/O Lines
• Three 16-bit Timer/Counters
• Eight Interrupt Sources
• Programmable Serial Channel
• Low Power Idle and Power Down Modes
Description
The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K
bytes of Flash programmable and erasable read only memory (PEROM). The device
is manufactured using Atmel’s high density nonvolatile memory technology and is
compatible with the industry standard 80C51 and 80C52 instruction set and pinout.
The on-chip Flash allows the program memory to be reprogrammed in-system or by a
conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU
with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer
which provides a highly flexible and cost effective solution to many embedded control
applications.
The AT89C52 provides the following standard features: 8K
bytes of Flash, 256 bytes of RAM, 32 I/O lines, three 16-bit
timer/counters, a six-vector two-level interrupt architecture,
a full duplex serial port, on-chip oscillator, and clock circuitry.
In addition, the AT89C52 is designed with static logic
for operation down to zero frequency and supports two
software selectable power saving modes. The Idle Mode
stops the CPU while allowing the RAM, timer/counters,
serial port, and interrupt system to continue functioning.
The Power Down Mode saves the RAM contents but
freezes the oscillator, disabling all other chip functions until
the next hardware reset.
Pin Description
VCC
Supply voltage.
GND
Ground.
Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. As an
output port, each pin can sink eight TTL inputs. When 1s
are written to port 0 pins, the pins can be used as highimpedance
inputs.
Port 0 can also be configured to be the multiplexed loworder
address/data bus during accesses to external program
and data memory. In this mode, P0 has internal
pullups.
Port 0 also receives the code bytes during Flash programming
and outputs the code bytes during program
verification. External pullups are required during program
verification.
Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pullups.
The Port 1 output buffers can sink/source four TTL inputs.
When 1s are written to Port 1 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 1 pins that are externally being pulled low will source
current (IIL) because of the internal pullups.
In addition, P1.0 and P1.1 can be configured to be the
timer/counter 2 external count input (P1.0/T2) and the
timer/counter 2 trigger input (P1.1/T2EX), respectively, as
shown in the following table.
Port 1 also receives the low-order address bytes during
Flash programming and verification.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pullups.
The Port 2 output buffers can sink/source four TTL inputs.
When 1s are written to Port 2 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 2 pins that are externally being pulled low will source
current (IIL) because of the internal pullups.
Port 2 emits the high-order address byte during fetches
from external program memory and during accesses to
external data memory that use 16-bit addresses (MOVX @
DPTR). In this application, Port 2 uses strong internal pullups
when emitting 1s. During accesses to external data
memory that use 8-bit addresses (MOVX @ RI), Port 2
emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some
control signals during Flash programming and verification.
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pullups.
The Port 3 output buffers can sink/source four TTL inputs.
When 1s are written to Port 3 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 3 pins that are externally being pulled low will source
current (IIL) because of the pullups.
Port 3 also serves the functions of various special features
of the AT89C51, as shown in the following table.
Port 3 also receives some control signals for Flash programming
and verification.
RST
Reset input. A high on this pin for two machine cycles while
the oscillator is running resets the device.
ALE/PROG
Address Latch Enable is an output pulse for latching the
low byte of the address during accesses to external memory.
This pin is also the program pulse input (PROG) during
Flash programming.
In normal operation, ALE is emitted at a constant rate of 1/6
the oscillator frequency and may be used for external timing
or clocking purposes. Note, however, that one ALE
Port Pin Alternate Functions
P1.0 T2 (external count input to Timer/Counter 2),
clock-out
P1.1 T2EX (Timer/Counter 2 capture/reload trigger and
direction control)
Port Pin Alternate Functions
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INT0 (external interrupt 0)
P3.3 INT1 (external interrupt 1)
P3.4 T0 (timer 0 external input)
P3.5 T1 (timer 1 external input)
P3.6 WR (external data memory write strobe)
P3.7 RD (external data memory read strobe)
4 AT89C52
pulse is skipped during each access to external data
memory.
If desired, ALE operation can be disabled by setting bit 0 of
SFR location 8EH. With the bit set, ALE is active only during
a MOVX or MOVC instruction. Otherwise, the pin is
weakly pulled high. Setting the ALE-disable bit has no
effect if the microcontroller is in external execution mode.
PSEN
Program Store Enable is the read strobe to external program
memory.
When the AT89C52 is executing code from external program
memory, PSEN is activated twice each machine
cycle, except that two PSEN activations are skipped during
each access to external data memory.
EA/VPP
External Access Enable. EA must be strapped to GND in
order to enable the device to fetch code from external program
memory locations starting at 0000H up to FFH.
Note, however, that if lock bit 1 is programmed, EA will be
internally latched on reset.
EA should be strapped to VCC for internal program
executions.
This pin also receives the 12-volt programming enable voltage
(VPP) during Flash programming when 12-volt
programming is selected.
XTAL1
Input to the inverting oscillator amplifier and input to the
internal clock operating circuit.