Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Electrical and Electronics Engineering (EEE)
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Electrical and Electronics Engineering (EEE)


[attachment=36753]

Module-I (18 hours)

Partial differential equation of first order, Linear partial differential equation, Non-linear partial differential equation, Homogenous and non-homogeneous partial differential equation with constant co-efficient, Cauchy type, Monge’s method, Second order partial differential equation
The vibrating string, the wave equation and its solution, the heat equation and its solution, Two dimensional wave equation and its solution, Laplace equation in polar, cylindrical and spherical coordinates, potential.

Module-II (12 hours)

Complex Analysis:
Analytic function, Cauchy-Riemann equations, Laplace equation, Conformal mapping,
Complex integration: Line integral in the complex plane, Cauchy’s integral theorem, Cauchy’s integral formula, Derivatives of analytic functions

Module –III (10 hours)

Power Series, Taylor’s series, Laurent’s series, Singularities and zeros, Residue integration method, evaluation of real integrals.



Physics of Semiconductor Devices
Module-I (10 Hours)


1. Introduction to the quantum theory of solids: Formation of energy bands, The k-space diagram (two and three dimensional representation), conductors, semiconductors and insulators.
2. Electrons and Holes in semiconductors: Silicon crystal structure, Donors and acceptors in the band model, electron effective mass, Density of states, Thermal equilibrium, Fermi-Dirac distribution function for electrons and holes, Fermi energy. Equilibrium distribution of electrons & holes: derivation of n and p from D(E) and f(E), Fermi level and carrier concentrations, The np product and the intrinsic carrier concentration. General theory of n and p, Carrier concentrations at extremely high and low temperatures: complete ionization, partial ionization and freeze-out. Energy-band diagram and Fermi-level, Variation of EF with doping concentration and temperature.
3. Motion and Recombination of Electrons and Holes: Carrier drift: Electron and hole mobilities, Mechanism of carrier scattering, Drift current and conductivity.

Module II (11 Hours)

4. Motion and Recombination of Electrons and Holes (continued): Carrier diffusion: diffusion current, Total current density, relation between the energy diagram and potential, electric field. Einstein relationship between diffusion coefficient and mobility. Electron-hole recombination, Thermal generation.
5. PN Junction: Building blocks of the pn junction theory: Energy band diagram and depletion layer of a pn junction, Built-in potential; Depletion layer model: Field and potential in the depletion layer, depletion-layer width; Reverse-biased PN junction; Capacitance-voltage characteristics; Junction breakdown: peak electric field. Tunneling breakdown and avalanche breakdown; Carrier injection under forward bias-Quasi-equilibrium boundary condition; current continuity equation; Excess carriers in forward-biased pn junction; PN diode I-V characteristic, Charge storage.
6. The Bipolar Transistor: Introduction, Modes of operation, Minority Carrier distribution, Collector current, Base current, current gain, Base width Modulation by collector current, Breakdown mechanism, Equivalent Circuit Models - Ebers -Moll Model.

Module III (12 Hours)

7. Metal-Semiconductor Junction: Schottky Diodes: Built-in potential, Energy-band diagram, I-V characteristics, Comparison of the Schottky barrier diode and the pn-junction diode. Ohmic contacts: tunneling barrier, specific contact resistance.
8. MOS Capacitor: The MOS structure, Energy band diagrams, Flat-band condition and flat-band voltage, Surface accumulation, surface depletion, Threshold condition and threshold voltage, MOS C-V characteristics, Qinv in MOSFET.
9. MOS Transistor: Introduction to the MOSFET, Complementary MOS (CMOS) technology, V-I Characteristics, Surface mobilities and high-mobility FETs, JFET, MOSFET Vt, Body effect and steep retrograde doping, pinch-off voltage,