Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: PAPER PRESENTATION ON BRAINGATE SYSTEM
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
PAPER PRESENTATION ON BRAINGATE SYSTEM

[attachment=38693]


ABSTRACT:

The mind-to-movement system that allows a quadriplegic man to control a computer using only his thoughts is a scientific milestone. It was reached, in large part, through the brain gate system. This system has become a boon to the paralyzed. The Brain Gate System is based on Cyber kinetics platform technology to sense,transmit,analyze and apply the language of neurons. The principle of operation behind the Brain Gate System is that with intact brain function, brain signals are generated even though they are not sent to the arms, hands and legs.The signals are interpreted and translated into cursor movements, offering the user an alternate Brain Gate pathway to control a computer with thought,just as individuals who have the ability to move their hands use a mouse.
The 'Brain Gate' contains tiny spikes that will extend down about one millimetre into the brain after being implanted beneath the skull,monitoring the activity from a small group of neurons.It will now be possible for a patient with spinal cord injury to produce brain signals that relay the intention of moving the paralyzed limbs,as signals to an implanted sensor,which is then output as electronic impulses. These impulses enable the user to operate mechanical devices with the help of a computer cursor. Matthew Nagle,a 25-year-old Massachusetts man with a severe spinal cord injury,has been paralyzed from the neck down since 2001.After taking part in a clinical trial of this system,he has opened e-mail,switched TV channels,turned on lights.He even moved a robotic hand from his wheelchair. This marks the first time that neural movement signals have been recorded and decoded in a human with spinal cord injury.The system is also the first to allow a human to control his surrounding environment using his mind.

How does the brain control motor function?

The brain is "hardwired" with connections, which are made by billions of neurons that make electricity whenever they are stimulated. The electrical patterns are called brain waves. Neurons act like the wires and gates in a computer, gathering and transmitting electrochemical signals over distances as far as several feet. The brain encodes information not by relying on single neurons, but by spreading it across large populations of neurons, and by rapidly adapting to new circumstances.
Motor neurons carry signals from the central nervous system to the muscles, skin and glands of the body, while sensory neurons carry signals from those outer parts of the body to the central nervous system. Receptors sense things like chemicals, light, and sound and encode this information into electrochemical signals transmitted by the sensory neurons. And interneurons tie everything together by connecting the various neurons within the brain and spinal cord. The part of the brain that controls motor skills is located at the ear of the frontal lobe.
How does this communication happen? Muscles in the body's limbs contain embedded sensors called muscle spindles that measure the length and speed of the muscles as they stretch and contract as you move. Other sensors in the skin respond to stretching and pressure. Even if paralysis or disease damages the part of the brain that processes movement, the brain still makes neural signals. They're just not being sent to the arms, hands and legs.

NEUROPROSTHETIC DEVICE:

A neuroprosthetic device known as Braingate converts brain activity into computer commands. A sensor is implanted on the brain, and electrodes are hooked up to wires that travel to a pedestal on the scalp. From there, a fiber optic cable carries the brain activity data to a nearby computer.

PRINCIPLE:

"The principle of operation of the BrainGate Neural Interface System is that with intact brain function, neural signals are generated even though they are not sent to the arms, hands and legs. These signals are interpreted by the System and a cursor is shown to the user on a computer screen that provides an alternate "BrainGate pathway". The user can use that cursor to control the computer, just as a mouse is used."

DETECTION:

The detection of the input from the user and them translating it into an action could be considered as key part of any BCI system. This detection means to try to find out these mental tasks from the EEG signal. It can be done in time-domain, e.g. by. comparing amplitudes of the EEG and in frequency-domain. This involves usually digital signal processing for sampling and band pass filtering the signal, then calculating these time -or frequency domain features and then classifying them. These classification algorithms include simple comparison of amplitudes linear and non-linear equations and artificial neural networks. By constant feedback from user to the system and vice versa, both partners gradually learn more from each other and improve the overall performance.

CONTROL

The final part consists of applying the will of the user to the used application. The user chooses an action by controlling his brain activity, which is then detected and classified to corresponding action. Feedback is provided to user by audio-visual means e.g. when typing with virtual keyboard, letter appears to the message box etc.

TRAINING:

The training is the part where the user adapts to the BCI system. This training begins with very simple exercises where the user is familiarized with mental activity which is used to relay the information to the computer. Motivation, frustration, fatigue, etc. apply also here and their effect should be taken into consideration when planning the training procedures

BIO FEEDBACK:

The definition of the biofeedback is biological information which is returned to the source that created it, so that source can understand it and have control over it. This biofeedback in BCI systems is usually provided by visually, e.g. the user sees cursor moving up or down or letter being selected from the alphabet.