Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: REPORT ON CELLONICS TECHNOLOGY
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
CELLONICS TECHNOLOGY

[attachment=48543]

INTRODUCTION

Are you tired of slow modem connections? Cellonics Incorporated has developed new technology that may end this and other communications problems forever. The new modulation and demodulation technology is called Cellonics. In general, this technology will allow for modem speeds that are 1,000 times faster than our present modems. The development is based on the way biological cells communicate with each other and nonlinear dynamical systems (NDS). Major telcos, which are telecommunications companies, will benefit from the incredible speed, simplicity, and robustness of this new technology, as well as individual users. In current technology, the ASCII uses a combination of ones and zeros to display a single letter of the alphabet (Cellonics, 2001). Then the data is sent over radio frequency cycle to its destination where it is then decoded. The original technology also utilizes carrier signals as a reference which uses hundreds of wave cycles before a decoder can decide on the bit value (Legard, 2001), whether the bit is a one or a zero, in order to translate that into a single character.
The Cellonics technology came about after studying biological cell behaviour. The study showed that human cells respond to stimuli and generate waveforms that consist of a continuous line of pulses separated by periods of silence. The Cellonics technology found a way to mimic these pulse signals and apply them to the communications industry (Legard, 2001). The Cellonics element accepts slow analog waveforms as input and in return produces predictable, fast pulse output, thus encoding digital information and sending it over communication channels. Nonlinear Dynamical Systems (NDS) are the mathematical formulations required to simulate the cell responses and were used in building Cellonics. Because the technique is nonlinear, performance can exceed the norm, but at the same time, implementation is straightforward (Legard, 2001).

PRINCIPLE OF CELLONICS TECHNOLOGY

The Cellonics™ technology is a revolutionary and unconventional approach based on the theory of nonlinear dynamical systems (NDS) and modelled after biological cellbehaviour1. In essence, the term Cellonics is an euphemism for ‘electronic cells’. When used in the field of communications, the technology has the ability to encode, transmit and decode digital information powerfully over a variety of physical channels, be they cables or wirelessly through the air. There have been much research over the past decades to study inter-cell communications.

CELLONICS CIRCUITS

Cellonics Inc. has developed and patented families of Cellonics™ circuits that are useful for various applications. One of these Cellonics™ circuits is an extremely simple circuit that exhibits the “Scurve” transfer characteristic. Fig 3a shows one of the possible circuit realizations. The circuit contains a negative impedance converter. Its iv transfer characteristic is shown in Fig 3b.Thetransfer characteristic consists of three different regions. The two lines at the top and bottom have positive slope, 1/RF and they represent the regions in which the Op-Amp is operating in the saturated (nonlinear) mode. In Fig 3b, the middle segment has a negative slope (negative resistance)

APPLICATIONS TO TELECOMMUNICATIONS

The Cellonics™ technology can be used as a modulation/demodulation technique with the Cellonics™ Element embedded in the demodulator(Fig 4a). One of the most important features of the Cellonics™ demodulation technique is its powerful inherent Carrier-rate Decoding™, which enables one information symbol to be carried in one RF carrier cycle. Convention systems require thousands of cycles to capture one symbol. Cellonics™ unique Carrier-rate Decoding™ offers throughput at maximum rate.

CELLONICS™ ADVANTAGES

The impact of Cellonics™ is such that it effects a fundamental change in the way digital communications have traditionally been done. As such, many communication devices will benefit from its incredible simplicity, speed and robustness.
Devices built with the Cellonics™ technology will save on chip/PCB real estate, power and implementation time.

New Life to Communication Devices

The strength of the Cellonics™ technology lies in its inherent Carrier-rate Decoding™ (i.e. extremely fast decoding rate), multilevel capability (spectral efficiency), simple circuitry, low power consumption and low cost. Some telecommunication application examples in wireless communication are cellular networks(2/3/4 G and beyond), W-LAN/Home networks ,LMDS, broadcasting, military radio, RF identification tags, low cost radar with fine range precision and sensor for automobiles. In wire line communication, some areas where the Cellonics™ technology is deployable are: high-speed modem cable modem, xDSL), LAN/Home networks, backbone telephony/data networks, power line communications and military applications. Beyond its application in telecommunication, the Cellonics ™ technology is also applicable in the electronics circuits such as gated oscillators, delta modulators, sigma-delta modulators and clock multipliers, etc.

CONCLUSION

The Cellonics communication method is one inspired by how biological cells signal. It is a fresh and novel look at how digital signals may be conveyed. In this digital day and age, it is timely; current digital communication designs are mostly derived from old analog signal methods. With the Cellonics method, much of the sub-systems in a traditional communication system are not required. Noise-generating and power-consuming systems such as voltage-controlled oscillators, PLLs, mixers, power amplifiers, etc., are eliminated. To a communications engineer, this is unheard off. One just doesn’t build a communication device without an oscillator, mixer, or….