Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Wavelet Based Image Compression Using Sub band Threshold Report
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Wavelet Based Image Compression Using Sub band Threshold

[attachment=50677]

ABSTRACT

Wavelet based image compression has been a focus of research in recent days. In this paper, we propose a compression technique based on modification of original EZW coding. In this lossy technique, we try to discard less significant information in the image data in order to achieve further compression with minimal effect on output image quality. The algorithm calculates weight of each subband and finds the subband with minimum weight in every level. This minimum weight subband in each level, that contributes least effect during image reconstruction, undergoes a threshold process to eliminate low-valued data in it. Zerotree coding is done next on the resultant output for compression. Different values of threshold were applied during experiment to see the effect on compression ratio and reconstructed image quality. The proposed method results in further increase in compression ratio with negligible loss in image quality.

INTRODUCTION:

Image compression is a technique of encoding an image to store it or send it using as fewer bits as possible. Presently the most common compression methods for still images fall into two categories: Discrete Cosine Transform (DCT) based techniques and methods based on wavelet transform. Widely used image compression technique JPEG achieves compression by applying DCT to the image, whereas wavelet transform methods generally use discrete wavelet transform (DWT) for this purpose.
With the recent developments in wavelet compression, this method has arisen to be an efficient coding method for still image compression, outperforming today’s DCT based JPEG standards. This state of the art compression technique is accomplished in three stages: 1) wavelet transform, 2) zerotree coding and 3) entropy based coding. Wavelet transform decomposes the image into several multi-resolution subbands in an octave manner, and perfectly reconstructs the original image from them. This multi-level decomposition is done using two dimensional wavelet filters (basis function), among which Haar and Daubechies filters are very popular. The appropriate choice of filters for the transform is very important in compression schemes to achieve high coding efficiency. Splitting of subband into next higher level four subbands using wavelet transform is shown in Figure 1.

WAVELET IMAGE COMPRESSION:

Image compression can be implemented using a variety of algorithms; such as transform based schemes, vector quantization and subband coding. The selection of an image compression algorithm depends mostly on criteria of achievable compression ratio and the quality of reconstructed images. Wavelet transform based coding is an emerging field for image compression with high coding efficiency. Recently a new wavelet based image compression scheme JPEG-2000 has been standardized, indicating the wavelet compression as the promising compression scheme of the future. This section presents an overview of wavelet image compression and later describes in detail a typical wavelet transform algorithm with
Embedded Zerotree wavelet coding scheme.

PROPOSED ALGORITHM:

The development of EZW (Embedded Zerotree Wavelet) image coding has attracted great attention among researchers. It is the most popular wavelet based compression algorithm and is widely used in a number of applications. This paper concentrates on EZW algorithm and proposes an algorithm that is basically an extension of it. The image is first decomposed into subbands using wavelet transform. Recursive transformation method is used for multi-level decomposition. The output data is then preprocessed before undergoing zerotree compression. Block diagram of wavelet based image coding algorithm is shown in figure 3
The main objective of this new algorithm is to enhance compression ratio of an image with minimal loss during reconstruction. This algorithm concentrates on the pre-processing stage of compression and removes some of the unwanted data present in transformed image that contribute less in image reconstruction, but require more bits during compression. Exploiting the tradeoff between compression ratio and reconstructed image quality, it eliminates some least important image data to achieve further compression with slight reduction in image quality.

CONCLUSION

The above method exploits the property of tradeoff between compression ratio and output PSNR, and reduces least important data in order to attain further compression. Better compression ratio is achieved compared to original EZW coder after applying threshold with slight reduction in PSNR during reconstruction