Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Motion Planning for Nonholonomic Systems
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Motion Planning for Nonholonomic Systems

[attachment=51753]

ABSTRACT

One of the most important problems in robotics is motion planning problem, which its basic controversy is to plan a collision-free path between initial and target configurations for a robot. In the framework of motion planning for nonholonomic systems, the wheeled robots have attracted a significant amount of interest. The path planner of a wheeled autonomous robot has to meet nonholonomic constraints and then the movement direction must always be tangent to its trajectory (Paromtichk et. al., 1998; Latombe, 1991, Murray & Sastry, 1993; Lamiraux & Laumond, 2001; Scheuer & Fraichard, 1996). If no obstacles exist on path of the robot, then the robot task is finding the shortest path connecting two given initial and final configurations. The shortest paths for a car like vehicle consist of a finite sequence of two elementary components: arcs of circle (with minimum turning radii) and straight line segments. In any case, the problem is that the curvature is discontinuous between two elementary components, so that these shortest paths cannot be followed precisely without stopping at each discontinuity point to reorient the front wheels. To avoid these stops, several authors have proposed continuous-curvature path planners using differential geometric methods. These planners generate clothoids, cubic spirals,