Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Report on Nano Generator to Power Nano Devices
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Nano Generator to Power Nano Devices

[attachment=52462]

ABSTRACT

Materials Science research is now entered a new phase where the structure and properties of materials are investigated, characterized and controlled at the nanoscale. Though as sophisticated as their larger counterparts, these devices are still burdened because they rely on an outside power. The size of the entire device is determined by the size of the power source. Batteries and other traditional sources are too large, and tend to negate the size advantages of nano devices. Also, batteries being used at present require toxic chemicals and have to be replaced periodically. To overcome these challenges; researchers are finding alternative ways to power nano devices. One promising development is the nano generator. In this talk, we specially emphasized application of nano generators, importance of nanowires in building a nano generator. Nanogenerator allows us to harvest or recycle energy from many sources to power these devices. The nanogenerators take advantage of the unique coupled piezoelectric and semiconducting properties of zinc oxide nanostructures, which produce small electrical charges when they are flexed.

INTRODUCTION

An array of zinc-oxide nanowires that generates current when vibrated with ultrasonic waves could provide a new way to power biological sensors and nano devices. Using ultrasonic waves to vibrate an array of zinc-oxide nanowires, researchers at Georgia Tech have made a tiny generator that can produce direct current. . By taking advantage of the fact that zinc-oxide nano wires are piezoelectric, they converted mechanical energy into electricity. And by finding a way to collect electricity from multiple nano wires, the researchers took a big step toward a practical nano-scale power generator.

NANOWIRE

Nanowires and other nano materials have shown great promise in creating future generations of electronic devices. New work from researchers at NIST, George Mason University, and Kwangwoon University in Seoul has generated a hybrid memory device that uses both conventional techniques and exploits the properties of silicon nanowires.

WHAT IS A NANO GENERATOR

Generation of electricity is necessary for some extremely small devices (nano devices) like medical devices, sensors and portable electronics without the need for bulky batteries or other energy sources. Instead of batteries, electricity for such devices would come, for instance, from muscle contraction or other body movements. Nano generator is one such device. Zinc oxide nanowires in nano generator produce electricity via a long-known phenomenon termed the piezoelectric effect. It occurs in certain materials, which change mechanical energy -- from flexing or twisting, for instance -- into electricity.

HOW IT WORKS

A key innovation that led to the nano wire generator is a new electrode design. Fabrication begins with growing an array of vertically-aligned nanowires approximately half a micron apart on gallium arsenide, sapphire or flexible polymer substrate.

POSSIBLE APPLICATIONS

The nano generator could provide a new way to power biological sensors and nano devices. It could drive them by making use of wind energy or liquid flow, eliminating the need for external batteries.
Current battery technology limits the use of microelectromechanical sensors that measure cancer biomarkers, blood pH and glucose. The reason: as these sensors get smaller and smaller, conventional chemical batteries can’t keep up. Most of the time it’s the battery that’s big compared to the sensing part and it also runs out of power.
Our bodies are good at converting chemical energy from glucose into the mechanical energy of our muscles. These nanogenerators can take that mechanical energy and convert it to electrical energy for powering devices inside the body.
The nano wire generator looks like a promising answer; it’s a small power source that doesn’t need refilling. One important application of the nano generator can be powering implantable biological sensors. Implanted in the body and driven by muscle contractions, blood flow or external vibrations transmitted through tissues, it could power the sensors.

FUTURE SCOPE

Researchers expect that with optimization, the nano generator could produce as much as 4 watts per cubic centimeter based on a calculation for a single nano wire. This would be enough to power a broad range of nano-scale defence, environmental and biomedical applications, including biosensors implanted in the body, environmental monitors and even nano scale robots.
The team expects to make as many as millions or even billions of nanowires produce current simultaneously, which will allow optimization of operation of nano generator. Producing the top electrode as a single assembly sets the stage for scaling up this technology to power real nano scale applications. Before that happens, additional development will be needed to optimize current production by controlling the growth, density and uniformity of the wires.
Because the chemical process by which the wires can be grown is inexpensive, at some point it may be practical to produce large arrays that are capable of providing enough power for consumer electronics. We can grow these on polymer substrates at very low cost, so that one day by placing these into people's shoes we can generate electricity when walking.
To power a simple electronic device such as a diode or a transistor, the need is to raise the charge on the device from its current milli volt to at least half a volt. Thus, researchers plan to make the nanowires more uniform and stack multiple arrays as well as add capacitors to accumulate charge.