Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Full Report on Microprocessor
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Microprocessor

[attachment=53661]

INTRODUCTION

A microprocessor incorporates the functions of a computer's central processing unit (CPU) on a single integrated circuit (IC),[1] or at most a few integrated circuits.[2] It is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Microprocessors operate on numbers and symbols represented in the binary numeral system.
The advent of low-cost computers on integrated circuits has transformed modern society. General-purpose microprocessors in personal computers are used for computation, text editing, multimedia display, and communication over the Internet. Many more microprocessors are part of embedded systems, providing digital control of a myriad of objects from appliances to automobiles to cellular phones and industrial process control.

Origins

During the 1960s, computer processors were constructed out of small and medium-scale ICs—each containing from tens to a few hundred transistors. These were placed and soldered onto printed circuit boards, and often multiple boards were interconnected in a chassis. The large number of discrete logic gates used more electrical power—and therefore produced more heat—than a more integrated design with fewer ICs. The distance that signals had to travel between ICs on the boards limited a computer's operating speed.
In the NASA Apollo space missions to the moon in the 1960s and 1970s, all onboard computations for primary guidance, navigation and control were provided by a small custom processor called "The Apollo Guidance Computer". It used wire wrap circuit boards whose only logic elements were three-input NOR gates.[3]
The integration of a whole CPU onto a single chip or on a few chips greatly reduced the cost of processing power. The integrated circuit processor was produced in large numbers by highly automated processes, so unit cost was low. Single-chip processors increase reliability as there are many fewer electrical connections to fail. As microprocessor designs get faster, the cost of manufacturing a chip (with smaller components built on a semiconductor chip the same size) generally stays the same.

Embedded applications

Thousands of items that were traditionally not computer-related include microprocessors. These include large and small household appliances, cars (and their accessory equipment units), car keys, tools and test instruments, toys, light switches/dimmers and electrical circuit breakers, smoke alarms, battery packs, and hi-fi audio/visual components (from DVD players to phonograph turntables.) Such products as cellular telephones, DVD video system and HDTV broadcast systems fundamentally require consumer devices with powerful, low-cost, microprocessors. Increasingly stringent pollution control standards effectively require automobile manufacturers to use microprocessor engine management systems, to allow optimal control of emissions over widely varying operating conditions of an automobile. Non-programmable controls would require complex, bulky, or costly implementation to achieve the results possible with a microprocessor.

Gilbert Hyatt

Gilbert Hyatt was awarded a patent claiming an invention pre-dating both TI and Intel, describing a "microcontroller".[9] The patent was later invalidated, but not before substantial royalties were paid out.[10][11]

TMS 1000

The Smithsonian Institution says TI engineers Gary Boone and Michael Cochran succeeded in creating the first microcontroller (also called a microcomputer) and the first one chipped CPU in 1971. The result of their work was the TMS 1000, which went commercial in 1974.[12] TI stressed the 4-bit TMS 1000 for use in pre-programmed embedded applications, introducing a version called the TMS1802NC on September 17, 1971 that implemented a calculator on a chip.
TI filed for a patent on the microprocessor. Gary Boone was awarded U.S. Patent 3,757,306 for the single-chip microprocessor architecture on September 4, 1973. We may never know which company actually had the first working microprocessor running on the lab bench. In 1971 and again in 1976, Intel and TI entered into broad patent cross-licensing agreements, with Intel paying royalties to TI for the microprocessor patent. A history of these events is contained in court documentation from a legal dispute between Cyrix and Intel, with TI as intervenor and owner of the microprocessor patent.

Four-Phase Systems AL1

The Four-Phase Systems AL1 was an 8-bit bit slice chip containing eight registers and an ALU.[21] It was designed by Lee Boysel in 1969.[22][23][24] At the time, it formed part of a nine-chip, 24-bit CPU with three AL1s, but it was later called a microprocessor when, in response to 1990s litigation by Texas Instruments, a demonstration system was constructed where a single AL1 formed part of a courtroom demonstration computer system, together with RAM, ROM, and an input-output device.[25]