Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: A SEMINAR REPORT ON WIRELESS COMMUNICATIONS
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
A SEMINAR REPORT ON WIRELESS COMMUNICATIONS


[attachment=56142]

ABSTRACT

Embedded systems are the computing devices hidden inside a vast array of everyday products and appliances such as cell phones, toys, handheld PDAs, cameras, etc. An embedded system is various type of computer system or computing device that performs a dedicated function and/or is designed for use with a specific embedded software application. Embedded systems may use a combination of ‘Read-only’ as well as with ‘Read-Write’ based operating system. But an embedded system is not usable as a commercially viable substitute for general-purpose computers or devices. As applications grow increasingly complex, so do the complexities of the embedded computing devices.
Use cases and scenarios are applied to describe the functional requirements of a software system. In our approach, a test is defined as a formalized and executable description of a scenario. Tests are derived from use case scenarios via continuous re- finement.Theusecaseandtestinformationcanbeassociatedwithasoftwarecomponent as embedded component metadata. In particular, our approach provides a model-based mapping of use cases and scenarios to test cases, as well as (runtime) traceability of these links.

INTRODUCTION

Wireless communications is one of the most active areas of technology development of our time. This development is being driven primarily by the transformation of what has been largely a medium for supporting voicetelephony into a medium for supporting other services, such as the transmission of video, images, text, and data. Thus, similar to the developments in wireline capacity in the 1990s, the demand for new wireless capacity is growing at a very rapid pace. Although there are, of course, still a great many technical problems to be solved in wireline communications, demands for additional wireline capacity can be fulfilled largely with the addition of new private infrastructure, such as additional optical fiber, routers, switches, and so on. On the other hand, the traditional resources that have been used to add capacity to wireless systems are radio bandwidth and transmitter power. Unfortunately, these two resources are among the most severely limited in the deployment of modern wireless networks: radio bandwidth because of the very tight situation with regard to useful radio spectrum, and transmitter power because mobile and other portable services require the use of battery power.

HISTORY OF WIRELESS COMMUNICATION

The world's first wireless telephone conversation occurred in 1880, when Alexander Graham Bell and Charles Sumner Tainter invented and patented the photophone, a telephone that conducted audio conversations wirelessly over modulated light beams (which are narrow projections of electromagnetic waves). In that distant era, when utilities did not yet exist to provide electricity and lasers had not even been imagined in science fiction, there were no practical applications for their invention, which was highly limited by the availability of both sunlight and good weather. Similar to free space optical communication, the photophone also required a clear line of sight between its transmitter and its receiver. It would be several decades before the photophone's principles found their first practical applications in military communications and later in fiber-optic communications.

Early wireless work

David E. Hughes transmitted radio signals over a few hundred yards by means of a clockwork keyed transmitter in 1879. As this was before Maxwell's work was understood, Hughes' contemporaries dismissed his achievement as mere "Induction". In 1885, Thomas Edison used a vibrator magnet for induction transmission. In 1888, Edison deployed a system of signaling on the Lehigh Valley Railroad. In 1891, Edison obtained the wireless patent for this method using inductance (U.S. Patent 465,971).
In 1888, Heinrich Hertz demonstrated the existence of electromagnetic waves, the underlying basis of most wireless technology. The theory of electromagnetic waves was predicted from the research of James Clerk Maxwell and Michael Faraday. Hertz demonstrated that electromagnetic waves traveled through space in straight lines, could be transmitted, and could be received by an experimental apparatus. Hertz did not follow up on the experiments. Jagadish Chandra Bose around this time developed an early wireless detection device and helped increase the knowledge of millimeter-length electromagnetic waves. Practical applications of wireless radio communication and radio remote control technology were implemented by later inventors, such as Nikola Tesla.

Radio

The term "wireless" came into public use to refer to a radio receiver or transceiver (a dual purpose receiver and transmitter device), establishing its usage in the field of wireless telegraphy early on; now the term is used to describe modern wireless connections such as in cellular networks and wireless broadband Internet. It is also used in a general sense to refer to any type of operation that is implemented without the use of wires, such as "wireless remote control" or "wireless energy transfer", regardless of the specific technology (e.g. radio, infrared, ultrasonic) used. Guglielmo Marconi and Karl Ferdinand Braun were awarded the 1909 Nobel Prize for Physics for their contribution to wireless telegraphy.

Broadcast messages and paging

Practically every cellular system has some kind of broadcast mechanism. This can be used directly for distributing information to multiple mobiles, commonly, for example in mobile telephony systems, the most important use of broadcast information is to set up channels for one to one communication between the mobile transceiver and the base station. This is called paging. The three different paging procedures generally adopted are sequential, parallel and selective paging.
The details of the process of paging vary somewhat from network to network, but normally we know a limited number of cells where the phone is located (this group of cells is called a Location Area in the GSM or UMTS system, or Routing Area if a data packet session is involved; in LTE, cells are grouped into Tracking Areas). Paging takes place by sending the broadcast message to all of those cells. Paging messages can be used for information transfer. This happens in pagers, in CDMA systems for sending SMS messages, and in the UMTS system where it allows for low downlink latency in packet-based connections.
Movement from cell to cell and handover
In a primitive taxi system, when the taxi moved away from a first tower and closer to a second tower, the taxi driver manually switched from one frequency to another as needed. If a communication was interrupted due to a loss of a signal, the taxi driver asked the base station operator to repeat the message on a different frequency.
In a cellular system, as the distributed mobile transceivers move from cell to cell during an ongoing continuous communication, switching from one cell frequency to a different cell frequency is done electronically without interruption and without a base station operator or manual switching. This is called the handover or handoff. Typically, a new channel is automatically selected for the mobile unit on the new base station which will serve it. The mobile unit then automatically switches from the current channel to the new channel and communication continues.

Bluetooth vs. Wi-Fi (IEEE 802.11)

Bluetooth and Wi-Fi (the brand name for products using IEEE 802.11 standards) have some similar applications: setting up networks, printing, or transferring files. Wi-Fi is intended as a replacement for cabling for general local area network access in work areas. This category of applications is sometimes called wireless local area networks (WLAN). Bluetooth was intended for portable equipment and its applications. The category of applications is outlined as the wireless personal area network (WPAN). Bluetooth is a replacement for cabling in a variety of personally carried applications in any setting and also works for fixed location applications such as smart energy functionality in the home (thermostats, etc.).

Ultra-wideband

The high speed (AMP) feature of Bluetooth v3.0 was originally intended for UWB, but the WiMedia Alliance, the body responsible for the flavor of UWB intended for Bluetooth, announced in March 2009 that it was disbanding, and ultimately UWB was omitted from the Core v3.0 specification.[36]
On 16 March 2009, the WiMedia Alliance announced it was entering into technology transfer agreements for the WiMedia Ultra-wideband (UWB) specifications. WiMedia has transferred all current and future specifications, including work on future high speed and power optimized implementations, to the Bluetooth Special Interest Group (SIG), Wireless USB Promoter Group and the USB Implementers Forum. After the successful completion of the technology transfer, marketing and related administrative items, the WiMedia Alliance will cease operations.[37][38][39][40][41][42]