Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: REVIEW OF MICROCONTROLLER
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
REVIEW OF MICROCONTROLLER

[attachment=56473]

Description

The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.

Port Description

Port 0


Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs. Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull-ups are required during program verification.

Port 1

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 1 also receives the low-order address bytes during Flash programming and verification.

Port 2

Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @ DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that uses 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

ALE/PROG

Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.

Read Only Memory (ROM)

Read Only Memory (ROM) is a type of memory used to permanently save the program being executed. The size of the program that can be written depends on the size of this memory. ROM can be built in the microcontroller or added as an external chip, which depends on the type of the microcontroller. Both options have some disadvantages. If ROM is added as an external chip, the microcontroller is cheaper and the program can be considerably longer. At the same time, a number of available pins is reduced as the microcontroller uses its own input/output ports for connection to the chip. The internal ROM is usually smaller and more expensive, but leaves more pins available for connecting to peripheral environment. The size of ROM ranges from 512B to 64KB.

Timers/Counters

Most programs use these miniature electronic "stopwatches" in their operation. These are commonly 8- or 16-bit SFRs the contents of which is automatically incremented by each coming pulse. Once the register is completely loaded, an interrupt is generated!
If these registers use an internal quartz oscillator as a clock source, then it is possible to measure the time between two events (if the register value is T1 at the moment measurement has started, and T2 at the moment it has finished, then the elapsed time is equal to the result of subtraction T2-T1 ). If the registers use pulses coming from external source, then such a timer is turned into a counter.
This is only a simple explanation of the operation itself. It’s somehow more complicated in practice.

Types of instructions

Depending on operation they perform, all instructions are divided in several groups:
• Arithmetic Instructions
• Branch Instructions
• Data Transfer Instructions
• Logic Instructions
• Bit-oriented Instructions
The first part of each instruction, called MNEMONIC refers to the operation an instruction performs (copy, addition, logic operation etc.). Mnemonics are abbreviations of the name of operation being executed. For example:
• INC R1 - Means: Increment register R1 (increment register R1);
• LJMP LAB5 - Means: Long Jump LAB5 (long jump to the address marked as LAB5);
• JNZ LOOP - Means: Jump if Not Zero LOOP (if the number in the accumulator is not 0, jump to the address marked as LOOP);
The other part of instruction, called OPERAND is separated from mnemonic by at least one whitespace and defines data being processed by instructions. Some of the instructions have no operand, while some of them have one, two or three. If there is more than one operand in an instruction, they are separated by a comma.