Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: BASIC INSTRUMENTATION MEASURING DEVICES AND BASIC PID CONTROL
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
BASIC INSTRUMENTATION MEASURING DEVICES AND BASIC PID CONTROL

[attachment=56771]

INTRODUCTION

Instrumentation is the art of measuring the value of some plant parameter,
pressure, flow, level or temperature to name a few and supplying a signal
that is proportional to the measured parameter. The output signals are
standard signal and can then be processed by other equipment to provide
indication, alarms or automatic control. There are a number of standard
signals; however, those most common in a CANDU plant are the 4-20 mA
electronic signal and the 20-100 kPa pneumatic signal.

PRESSURE MEASUREMENT

This module will examine the theory and operation of pressure detectors
(bourdon tubes, diaphragms, bellows, forced balance and variable
capacitance). It also covers the variables of an operating environment
(pressure, temperature) and the possible modes of failure.

General Theory

Pressure is probably one of the most commonly measured variables in the
power plant. It includes the measurement of steam pressure; feed water
pressure, condenser pressure, lubricating oil pressure and many more.
Pressure is actually the measurement of force acting on area of surface.

Pressure Scales

Before we go into how pressure is sensed and measured, we have to
establish a set of ground rules. Pressure varies depending on altitude above
sea level, weather pressure fronts and other conditions.
The measure of pressure is, therefore, relative and pressure measurements
are stated as either gauge or absolute.

Bellows

Bellows type elements are constructed of tubular membranes that are
convoluted around the circumference (see Figure 3). The membrane is
attached at one end to the source and at the other end to an indicating
device or instrument. The bellows element can provide a long range of
motion (stroke) in the direction of the arrow when input pressure is
applied.

Strain Gauges

The strain gauge is a device that can be affixed to the surface of an object
to detect the force applied to the object. One form of the strain gauge is a
metal wire of very small diameter that is attached to the surface of a
device being monitored.

Capacitance Capsule

Similar to the strain gauge, a capacitance cell measures changes in
electrical characteristic. As the name implies the capacitance cell measures
changes in capacitance. The capacitor is a device that stores electrical
charge. It consists of metal plates separated by an electrical insulator. The
metal plates are connected to an external electrical circuit through which
electrical charge can be transferred from one metal plate to the other.
The capacitance of a capacitor is a measure of its ability to store charge.
The capacitance of the capacitance of a capacitor is directly proportional
to the area of the metal plates and inversely proportional to the distance
between them. It also depends on a characteristic of the insulating material
between them. This characteristic, called permittivity is a measure of how
well the insulating material increases the ability of the capacitor to store
charge.

FLOW MEASUREMENT

There are various methods used to measure the flow rate of steam, water,
lubricants, air, etc., in a nuclear generating station. However, in this module
will look at the most common, namely the DP cell type flow detector. Also
in this section we will discuss the application of a square root extractor and
cut-off relay plus the possible sources of errors in flow measurements and
different failure modes that can occur.

Flow Detectors

To measure the rate of flow by the differential pressure method, some form
of restriction is placed in the pipeline to create a pressure drop. Since flow in
the pipe must pass through a reduced area, the pressure before the restriction
is higher than after or downstream. Such a reduction in pressure will cause
an increase in the fluid velocity because the same amount of flow must take
place before the restriction as after it. Velocity will vary directly with the
flow and as the flow increases a greater pressure differential will occur
across the restriction. So by measuring the differential pressure across a
restriction, one can measure the rate of flow.

Orifice Plate

The orifice plate is the most common form of restriction that is used in flow
measurement. An orifice plate is basically a thin metal plate with a hole
bored in the center. It has a tab on one side where the specification of the
plate is stamped. The upstream side of the orifice plate usually has a sharp,
edge. Figure 1 shows a representative orifice plate.