Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: User manual LPC214x
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
User manual LPC214x

[attachment=57534]

Introduction

The LPC2141/2/4/6/8 microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU with
real-time emulation and embedded trace support, that combines the microcontroller with
embedded high speed flash memory ranging from 32 kB to 512 kB. A 128-bit wide
memory interface and a unique accelerator architecture enable 32-bit code execution at
the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb
mode reduces code by more than 30 % with minimal performance penalty.
Due to their tiny size and low power consumption, LPC2141/2/4/6/8 are ideal for
applications where miniaturization is a key requirement, such as access control and
point-of-sale. A blend of serial communications interfaces ranging from a USB 2.0 Full
Speed device, multiple UARTs, SPI, SSP to I2Cs, and on-chip SRAM of 8 kB up to 40 kB,
make these devices very well suited for communication gateways and protocol
converters, soft modems, voice recognition and low end imaging, providing both large
buffer size and high processing power. Various 32-bit timers, single or dual 10-bit ADC(s),
10-bit DAC, PWM channels and 45 fast GPIO lines with up to nine edge or level sensitive
external interrupt pins make these microcontrollers particularly suitable for industrial
control and medical systems.

Features

• 16/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64 package.
• 8 to 40 kB of on-chip static RAM and 32 to 512 kB of on-chip flash program memory.
128 bit wide interface/accelerator enables high speed 60 MHz operation.
• In-System/In-Application Programming (ISP/IAP) via on-chip boot-loader software.
Single flash sector or full chip erase in 400 ms and programming of 256 bytes in 1 ms.
• EmbeddedICE RT and Embedded Trace interfaces offer real-time debugging with the
on-chip RealMonitor software and high speed tracing of instruction execution.
• USB 2.0 Full Speed compliant Device Controller with 2 kB of endpoint RAM.
In addition, the LPC2146/8 provide 8 kB of on-chip RAM accessible to USB by DMA.
• One or two (LPC2141/2 vs. LPC2144/6/8) 10-bit A/D converters provide a total of 6/14
analog inputs, with conversion times as low as 2.44 μs per channel.
• Single 10-bit D/A converter provides variable analog output.
• Two 32-bit timers/external event counters (with four capture and four compare
channels each), PWM unit (six outputs) and watchdog.
• Low power real-time clock with independent power and dedicated 32 kHz clock input.
• Multiple serial interfaces including two UARTs (16C550), two Fast I2C-bus
(400 kbit/s), SPI and SSP with buffering and variable data length capabilities.
• Vectored interrupt controller with configurable priorities and vector addresses.
• Up to 45 of 5 V tolerant fast general purpose I/O pins in a tiny LQFP64 package.
• Up to nine edge or level sensitive external interrupt pins available.

Applications

Industrial control
Medical systems
Access control
Point-of-sale
Communication gateway
Embedded soft modem
General purpose applications

ARM7TDMI-S processor

The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high
performance and very low power consumption. The ARM architecture is based on
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related
decode mechanism are much simpler than those of microprogrammed Complex
Instruction Set Computers. This simplicity results in a high instruction throughput and
impressive real-time interrupt response from a small and cost-effective processor core.
Pipeline techniques are employed so that all parts of the processing and memory systems
can operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.
The ARM7TDMI-S processor also employs a unique architectural strategy known as
THUMB, which makes it ideally suited to high-volume applications with memory
restrictions, or applications where code density is an issue.

On-chip flash memory system

The LPC2141/2/4/6/8 incorporate a 32 kB, 64 kB, 128 kB, 256 kB, and 512 kB Flash
memory system, respectively. This memory may be used for both code and data storage.
Programming of the Flash memory may be accomplished in several ways: over the serial
built-in JTAG interface, using In System Programming (ISP) and UART0, or by means of
In Application Programming (IAP) capabilities. The application program, using the IAP
functions, may also erase and/or program the Flash while the application is running,
allowing a great degree of flexibility for data storage field firmware upgrades, etc. When
the LPC2141/2/4/6/8 on-chip bootloader is used, 32 kB, 64 kB, 128 kB, 256 kB, and
500 kB of Flash memory is available for user code.