Seminar Topics & Project Ideas On Computer Science Electronics Electrical Mechanical Engineering Civil MBA Medicine Nursing Science Physics Mathematics Chemistry ppt pdf doc presentation downloads and Abstract

Full Version: Dynamic Routing with Security Considerations (Heightening Security for Data pdf
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
Dynamic Routing with Security Considerations (Heightening Security for Data Transmission through Routing)


Abstract:

In this project we deal fully about the Security which has become one of the major issues for data communication over wired and wireless networks. Different from the past work on the designs of cryptography algorithms and system infrastructures, we will propose a dynamic routing algorithm that could randomize delivery paths for data transmission. The algorithm is easy to implement and compatible with popular routing protocols, such as the Routing Information Protocol in wired networks and Destination-Sequenced Distance Vector protocol in wireless networks, without introducing extra control messages. An analytic study on the proposed algorithm is presented, and a series of simulation experiments are conducted to verify the analytic results and to show the capability of the proposed algorithm. In the past decades, various security-enhanced measures have been proposed to improve the security of data transmission over public networks. Existing work on security-enhanced data transmission includes the designs of cryptography algorithms and system infrastructures and security-enhanced routing methods. The main objective of the project is to propose a dynamic routing algorithm to improve the security of data transmission.

Introduction

In the past decades, various security-enhanced measures have been proposed to improve the security of data transmission over public networks. Existing work on security-enhanced data transmission includes the designs of cryptography algorithms and system infrastructures and security-enhanced routing methods. Their common objectives are often to defeat various threats over the Internet, including eavesdropping, spoofing, session hijacking, etc.Among many well-known designs for cryptograph based systems, the IP Security (IPSec) [23] and the Secure Socket Layer (SSL) [21] are popularly supported and implemented in many systems and platforms. Although IPSec and SSL do greatly improve the security level for data transmission, they unavoidably introduce substantial overheads [1], [7], [13], especially on gateway/host performance and effective network bandwidth. For example, the data transmission overhead is 5 cycles/byte over an Intel Pentium II with the Linux IP stack alone, and the overhead increases to 58 cycles/byte when Advanced Encryption Standard (AES) [10] is adopted for encryption/decryption for IPSec. Another alternative for security-enhanced data transmission is to dynamically route packets between each source and its destination so that the chance for system break-in, due to successful interception of consecutive packets for a session, is slim. The intention of security-enhanced routing is different from the adopting of multiple paths between a source and a destination to increase the throughput of data transmission.

Serial and parallel transmission

In telecommunications, serial transmission is the sequential transmission of signal elements of a group representing a character or other entity of data. Digital serial transmissions are bits sent over a single wire, frequency or optical path sequentially. Because it requires less signal processing and less chances for error than parallel transmission, the transfer rate of each individual path may be faster. This can be used over longer distances as a check digit or parity bit can be sent along it easily.
In telecommunications, parallel transmission is the simultaneous transmission of the signal elements of a character or other entity of data. In digital communications, parallel transmission is the simultaneous transmission of related signal elements over two or more separate paths. Multiple electrical wires are used which can transmit multiple bits simultaneously, which allows for higher data transfer rates than can be achieved with serial transmission. This method is used internally within the computer, for example the internal buses, and sometimes externally for such things as printers, The major issue with this is "skewing" because the wires in parallel data transmission have slightly different properties (not intentionally) so some bits may arrive before others, which may corrupt the message. A parity bit can help to reduce this. However, electrical wire parallel data transmission is therefore less reliable for long distances because corrupt transmissions are far more likely.

Adaptive routing

Adaptive routing describes the capability of a system, through which routes are characterized by their destination, to alter the path that the route takes through the system in response to a change in conditions. The adaptation is intended to allow as many routes as possible to remain valid (that is, have destinations that can be reached) in response to the change.
People using a transport system can display adaptive routing. For example, if a local railway station is closed, people can alight from a train at a different station and use another method, such as a bus, to reach their destination.
The term is commonly used in data networking to describe the capability of a network to 'route around' damage, such as loss of a node or a connection between nodes, so long as other path choices are available.

Routing Information Protocol

The Routing Information Protocol (RIP) is a dynamic routing protocol used in local and wide area networks. As such it is classified as an interior gateway protocol (IGP). It uses the distance-vector routing algorithm. It was first defined in RFC 1058 (1988). The protocol has since been extended several times, resulting in RIP Version 2 (RFC 2453). Both versions are still in use today, however, they are considered technically obsolete by more advanced techniques, Open Shortest Path First (OSPF) and the OSI protocol IS-IS. RIP has also been adapted for use in IPv6 networks, a standard known as RIPng

Destination-Sequenced Distance Vector routing

Destination-Sequenced Distance-Vector Routing (DSDV) is a table-driven routing scheme for ad hoc mobile networks based on the Bellman-Ford algorithm. It was developed by C. Perkins and P.Bhagwat in 1994. The main contribution of the algorithm was to solve the Routing Loop problem. Each entry in the routing table contains a sequence number, the sequence numbers are generally even if a link is present; else, an odd number is used. The number is generated by the destination, and the emitter needs to send out the next update with this number. Routing information is distributed between nodes by sending full dumps infrequently and smaller incremental updates more frequently.

Selection of Route

If a router receives new information, then it uses the latest sequence number. If the sequence number is the same as the one already in the table, the route with the better metric is used. Stale entries are those entries that have not been updated for a while. Such entries as well as the routes using those nodes as next hops are deleted.

Advantages

DSDV was one of the early algorithms available. It is quite suitable for creating ad hoc networks with small number of nodes. Since no formal specification of this algorithm is present there is no commercial implementation of this algorithm. Many improved forms of this algorithm have been suggested.